Honeywell

User Manual

Smart VFD HVAC

Variable Frequency Drives for Constant and Variable Torque Applications

63-2692-01

INDEX

Document: DPD00049A Version release date: 9.6.09

1.	Safety	.2
1.1	Danger	. 2
1.2	Warnings	. 3
1.3	Grounding and ground fault protection	. 3
1.4	Changing EMC protection class	. 4
1.4.1	Frames MR4 to MR7	. 4
1.5	Running the motor	. 6
2.	Receipt of delivery	.8
2.1	'Product modified' sticker	. 8
2.2	Unpacking and lifting the drive	. 9
2.2.1	Lifting frames MR4 to MR7	. 9
2.3	Type designation code	10
3.	Mounting	12
3.1	Dimensions	12
3.1.1	Normal mount, MR4-MR7	12
3.1.2	Flush mount, MR4 to MR7	14
3.2	Cooling	16
4.	Power cabling	18
4.1	UL standards on cabling	19
4.1.1	Cable dimensioning and selection	19
4.2	Brake resistor cables	21
4.3	Control cables	21
4.4	Cable installation.	22
4.4.1	Frames MR4 to MR7	22
4.4.Z		29
5.	Commissioning	30
5.1	Commissioning of the SmartVFD HVAC	31
6.	Control unit	32
6.1	Control unit cabling	33
6.1.1	Control cable sizing	33
6.1.2	Control terminals and DIP switches	34
0.Z	Prenare for use through othernet	31
622	Prepare for use through MS/TP	31 30
623	RS485 cable data	42
6.3	Battery installation for Real Time Clock (RTC)	43
6.4	Galvanic isolation barriers	44
7.	Product data	45
71	Power ratings	45
7.1.1	Definitions of overloadability	46
7.2	SmartVFD HVAC - technical data	47
7.2.1	Technical information on control connections	49

1. SAFETY

This manual contains clearly marked cautions and warnings which are intended for your personal safety and to avoid any unintentional damage to the product or connected appliances.

Please read the information included in cautions and warnings carefully.

The cautions and warnings are marked as follows:

Table 1. Warning signs

1.1 Danger

A	The components of the power unit of the Smart VFD HVAC are live when the drive is connected to mains potential. Coming into contact with this voltage is extremely dangerous and may cause death or severe injury.
A	The motor terminals U, V, W and the brake resistor terminals are live when the drive is connected to mains, even if the motor is not running.
A	After disconnecting the drive from the mains, wait until the indicators on the keypad go out (if no keypad is attached see the indicators on the cover). Wait 5 more minutes before doing any work on the connections of the drive. Do not open the cover before this time has expired. After expiration of this time, use a measuring equipment to absolutely ensure that no voltage is present. Always ensure absence of voltage before starting any electrical work!
A	The control I/O-terminals are isolated from the mains potential. However, the relay outputs and other I/O-terminals may have a dangerous control voltage present even when the drive is disconnected from mains.
A	Before connecting the drive to mains make sure that the front and cable covers of the drive are closed.
A	During a ramp stop (see the Application Manual), the motor is still generating voltage to the drive. Therefore, do not touch the components of the drive before the motor has completely stopped. Wait until the indicators on the keypad go out (if no keypad is attached see the indicators on the cover). Wait additional 5 minutes before starting any work on the drive.

1.2 Warnings

\triangle	The Honeywell Smart VFD HVAC is meant for fixed installations only .
\wedge	Do not perform any measurements when the drive is connected to the mains.
\triangle	The ground leakage current of the Honeywell Smart VFD HVAC exceeds 3.5mA AC. According to standard EN61800-5-1, a reinforced protective ground connection must be ensured. See chapter 1.3.
\triangle	If the drive is used as a part of a machine, the machine manufacturer is responsible for providing the machine with a supply disconnecting device (EN 60204-1).
\wedge	Only spare parts delivered by Honeywell can be used.
⚠	At power-up, power brake or fault reset the motor will start immediately if the start signal is active, unless the pulse control for Start/Stop logic has been selected. Futhermore, the I/O functionalities (including start inputs) may change if parameters, applications or software are changed.Disconnect, therefore, the motor if an unexpected start can cause danger.
\wedge	The motor starts automatically after automatic fault reset if the autoreset func- tion is activated. See the Application Manual for more detailed information.
\wedge	Prior to measurements on the motor or the motor cable , disconnect the motor cable from the drive.
\wedge	Do not touch the components on the circuit boards . Static voltage discharge may damage the components.
\wedge	Check that the EMC level of the drive corresponds to the requirements of your supply network. See chapter 1.4.
	In a domestic environment, this product may cause radio interference in which case supplementary mitigation measures may be required.

1.3 Grounding and ground fault protection

The Honeywell Smart VFD HVAC AC drive must always be grounded with an grounding conductor connected to the grounding terminal marked with (\downarrow) .

The ground leakage current of the drive exceeds 3.5mA AC. According to EN61800-5-1, one or more of the following conditions for the associated protective circuit shall be satisfied:

- a) The protective conductor shall have a cross-sectional area of at least 10 mm² Cu or 16 mm² Al, through its total run.
- b) Where the protective conductor has a cross-sectional area of less than 10 mm² Cu or 16 mm² Al, a second protective conductor of at least the same cross-sectional area shall be provided up to a point where the protective conductor has a cross-sectional area not less than 10 mm² Cu or 16 mm² Al.

c) Automatic disconnection of the supply in case of loss of cortinuity of the protective conductor. See chapter 4.

The cross-sectional area of every protective grounding conductor which does not form part of the supply cable or cable enclosure shall, in any case, be not less than:

- 2.5mm² if mechanical protection is provided or
- 4mm² if mechanical protection is not provided.

The ground fault protection inside the drive protects only the drive itself against ground faults in the motor or the motor cable. It is not intended for personal safety.

Due to the high capacitive currents present in the drive, fault current protective switches may not function properly.

Do not perform any voltage withstand tests on any part of the drive. There is a certain procedure according to which the tests shall be performed. Ignoring this procedure may result in damaged product.

1.4 Changing EMC protection class

If your supply network is an IT (impedance-grounded) system but your drive is EMC-protected according to classes C1 or C2 you need to modify the EMC protection of the drive to EMC-level **T**. This is done by removing the built-in RFI-filters from ground with a simple procedure described below:

Warning! Do not perform any modifications on the drive when it is connected to mains.

1.4.1 Frames MR4 to MR7

Remove the main cover (frames MR4 to MR7) and the cable cover (frames MR6 and MR7) of the drive (see pages 25 and 26) and locate the jumpers connecting the built-in RFI-filters to ground. See Figure 1.

Figure 1. Locations of the built-in RFI-filters in frames MR4 to MR7

2	Disconnect the RFI-filters from ground by lifting the jumpers up from their default positions. See Figure 2.
3	NOTE! Secure the upper position of jumpers with locking clip (provided in Accessories bag, see chapter 2.4) as shown in Figure 2. in order toprevent the jumpers from being accidentally pushed down.

Figure 2. Disconnecting the jumper and locking to upper position (MR7 as example)

4 Additionally for MR7, locate the DC grounding busbar between connectors and U and connect the busbar to the frame with an M4 screw (provided in the cessories bag).	R- e Ac-
---	-------------

Figure 3. MR7: Connecting the DC grounding busbar to frame

CAUTION! Before connecting the drive to mains make sure that the EMC protection class of the drive has the proper setting on.

NOTE! After having performed the change write ' <i>EMC level modified'</i> on the sticler included with the drive delivery (see below) and note the date. Unless alread done, attach the sticker close to the name plate the drive.				
Product modified Date: EMC-level modified C1->T Date: Date: Date:				

1.5 Running the motor

MOTOR RUN CHECK LIST

\triangle	Before starting the motor, check that the motor is mounted properly and ensure that the machine connected to the motor allows the motor to be started.
\land	Set the maximum motor speed (frequency) according to the motor and the machine connected to it.
\wedge	Before reversing the motor make sure that this can be done safely.
\wedge	Make sure that no power correction capacitors are connected to the motor cable.
\triangle	Make sure that the motor terminals are not connected to mains potential.

2. **RECEIPT OF DELIVERY**

Check the correctness of delivery by comparing your order data to the drive information found on the package label. If the delivery does not correspond to your order, contact the supplier immediately. See chapter 2.3.

2.1 'Product modified' sticker

In the small plastic bag included with delivery you will find a silver *Product modified* sticker. The purpose of the sticker is to notify the service personnel about the modifications made in the drive. Attach the sticker on the side of the drive to avoid losing it. Should the drive be later modified mark the change on the sticker.

Figure 4. 'Product modified' sticker

2.2 Unpacking and lifting the drive

The weights of the drives vary greatly according to the size. You may need to use a piece of special lifting equipment to remove the drive from its package. Note the weights of each individual frame size in Table 2 below.

Frame	Weight [kg]
MR4	6.0
MR5	10.0
MR6	20.0
MR7	37.5

Table 2. Frame weights

If you decide to use a piece of lifting equipment see picture below for recommendations to lift the drive.

2.2.1 Lifting frames MR4 to MR7

Figure 5. Placing the lifting hooks, MR4-MR6 (left) and MR7 (right)

The Honeywell Smart VFD HVAC undergoes scrupulous tests and quality checks at the factory before it is delivered to the customer. However, after unpacking the product, check that no signs of transport damages are to be found on the product and that the delivery is complete.

Should the drive have been damaged during the shipping, please contact primarily the cargo insurance company or the carrier.

2.3 Type designation code

Honeywell type designation code is formed of a nine-segment code and optional +codes. Each segment of the type designation code uniquely corresponds to the product and options you have ordered. The code is of the following format:

3. MOUNTING

The drive must be mounted in vertical position on the wall. Ensure that the mounting plane is relatively even.

The drive shall be fixed with four screws (or bolts, depending on the unit size).

3.1 Dimensions

3.1.1 Normal mount, MR4-MR7

Figure 7. SmartVFD HVAC dimensions, MR4, normal mount

Figure 8. SmartVFD HVAC dimensions, MR5, normal mount

Figure 9. SmartVFD HVAC dimensions, MR6, normal mount

Figure 10. SmartVFD HVAC dimensions, MR7, normal mount

3.1.2 Flush mount, MR4 to MR7

Figure 11. SmartVFD HVAC dimensions, MR4, flush mount

Figure 12. SmartVFD HVAC dimensions, MR5, flush mount

Figure 13. SmartVFD HVAC dimensions, MR6, flush mount

Figure 14. SmartVFD HVAC dimensions, MR7, flush mount

3.2 Cooling

The drive produces heat in operation and is cooled by air circulated by a fan. Enough free space needs to be left around the drive to ensure sufficient air circulation and cooling. Different acts of maintenance also require a certain amount of free space.

Make sure that the temperature of the cooling air does not exceed the maximum ambient temperature of the converter.

Min clearance [in], IP21					
Туре	\mathbf{A}^{*}	B *	С	D	
MR4	.79	.79	3.94	1.97	
MR5	.79	.79	4.72	2.36	
MR6	.79	.79	6.30	3.15	
MR7	1.18	1.18	9.84	3.94	

*. Min clearances A and B for drives with IP54 enclosure is 0 in.

Table 3. Min. clearances around drive

Figure 15. Installation space

- **A** = clearance around the drive (see also B)
- **B** = distance from one drive to another or distance to cabinet wall
- **C** = free space above the drive
- **D** = free space underneath the drive

Note that if several units are mounted above one another the required free space equals C + D (see Figure 15.). Moreover, the outlet air used for cooling by the lower unit must be directed away from the air intake of the upper unit.

Туре	Cooling air required [cfm]		
MR4	26		
MR5	44		
MR6	112		
MR7	109		

Table 4. Required cooling air

4. **POWER CABLING**

The mains cables are connected to terminals L1, L2 and L3 and the motor cables to terminals marked with U, V and W. See Table 5 for the cable recommendations for different EMC levels.

Use cables with heat resistance of at least +158°F. The cables and the fuses must be dimensioned according to the drive nominal OUTPUT current which you can find on the rating plate.

1 st environment 2nd environment					
Cable type	EMC levels According to EN61800-3 (2004)				
	Category C2	Category C3	Level T		
Mains cable	1	1	1		
Motor cable	3*	2	2		
Control cable	4	4	4		

Table 5. Cable types required to meet standards

- 1 = Power cable intended for fixed installation and the specific mains voltage. Shielded cable not required. (MCMK or similar recommended).
- 2 = Symmetrical power cable equipped with concentric protection wire and intended for the specific mains voltage. (MCMK or similar recommended). See Figure 16.
- 3 = Symmetrical power cable equipped with compact low-impedance shield and intended for the specific mains voltage. [MCCMK, EMCMK or similar recommended; Recommended cable transfer impedance (1Mhz...30MHz) max. 100mohm/m]. See Figure 16.
 *360° grounding of the shield with cable glands in motor end needed for EMC level C2.
- 4 = Screened cable equipped with compact low-impedance shield (JAMAK, SAB/ÖZCuY-O or similar).

Figure 16.

NOTE: The EMC requirements are fulfilled at factory defaults of switching frequencies (all frames).

NOTE: If safety switch is connected the EMC protection shall be continuous over the whole cable installation.

4.1 UL standards on cabling

To meet the UL (Underwriters Laboratories) regulations, use a UL-approved copper cable with a minimum heat-resistance of +140/167°F. Use Class 1 wire only.

The units are suitable for use ona circuit capable of delivering not more than 100,000 rms symmetrical amperes, 600V maximum.

4.1.1 Cable dimensioning and selection

Table 6 shows the minimum dimensions of the Cu/Al-cables and the corresponding fuse sizes. Recommended fuse types are gG/gL.

If the motor temperature protection of the drive (see Application Manual) is used as an overload protection, the cable shall be chosen accordingly.

These instructions apply only to cases with one motor and one cable connection from the drive to the motor. In any other case, ask the factory for more information.

4.1.1.1 Cable and fuse sizes, frames MR4 to MR6, North America

The recommended fuse types are gG/gL (IEC 60269-1) or class T (UL & CSA). The fuse voltage rating should be selected according to the supply network. The final selection should be made according to local regulations, cable installation conditions and cable specification. Bigger fuses than what is recommended below shall not be used.

Check that the fuse operating time is less than 0.4 seconds. Operating time depends on used fuse type and impedance of the supply circuit. Consult the factory about faster fuses. Honeywell offers recommendations also for high speed J (UL & CSA), aR (UL recognized, IEC 60269-4) and gS (IEC 60269-4) fuse ranges.

		Fuse I _L (class T) [A] [A]	Mains, motor and	Terminal cable size		
Frame	Туре		ground cable Cu	Main terminal	Ground terminal	
	0003 4	3.4	6	AWG14	AWG24-AWG10	AWG17-AWG10
	0004 4	4.8	6	AWG14	AWG24-AWG10	AWG17-AWG10
MR/	0005 4	5.6	10	AWG14	AWG24-AWG10	AWG17-AWG10
1411.74	0008 4	8.0	10	AWG14	AWG24-AWG10	AWG17-AWG10
	0009 4	9.6	15	AWG14	AWG24-AWG10	AWG17-AWG10
	0012 4	12.0	20	AWG14	AWG24-AWG10	AWG17-AWG10
	0016 4	16.0	25	AWG10	AWG20-AWG5	AWG17-AWG8
MR5	0023 4	23.0	30	AWG10	AWG20-AWG5	AWG17-AWG8
	0031 4	31.0	40	AWG8	AWG20-AWG5	AWG17-AWG8
	0038 4	38.0	50	AWG4	AWG13-AWG0	AWG13-AWG2
MDG	0046 4	46.0	60	AWG4	AWG13-AWG0	AWG13-AWG2
IVIRO	0061 4*	61.0	80	AWG4	AWG13-AWG0	AWG13-AWG2

*. The 460V models require 90-degree wire to meet UL regulations

Table 6. Cable and fuse sizes for Honeywell Smart VFD HVAC (MR4 to MR6)

The cable dimensioning is based on the criteria of the Underwriters' Laboratories UL508C:Cables must be PVC-isolated; Max ambient temperature +86°F, max temperature of cable surface +158°F; Use only cables with concentric copper shield; Max number of parallel cables is 9.

When using cables in parallel, **NOTE HOWEVER** that the requirements of both the cross-sectional area and the max number of cables must be observed.

For important information on the requirements of the grounding conductor, see standard Underwriters' Laboratories UL508C.

For the correction factors for each temperature, see the instructions of standard Underwriters' Laboratories UL508C.

4.1.1.2 Cable and fuse sizes, frame MR7, North America

The recommended fuse types are gG/gL (IEC 60269-1) or class T (UL & CSA). The fuse voltage rating should be selected according to the supply network. The final selection should be made according to local regulations, cable installation conditions and cable specification. Bigger fuses than what is recommended below shall not be used.

Check that the fuse operating time is less than 0.4 seconds. Operating time depends on used fuse type and impedance of the supply circuit. Consult the factory about faster fuses. Honeywell offers recommendations also for high speed J (UL & CSA), aR (UL recognized, IEC 60269-4) and gS (IEC 60269-4) fuse ranges.

	1.		Fuse	Mains, motor	Terminal cable size		
Frame	Туре	·L (c [A]	(class T) [A]	cable Cu	Main terminal	Ground terminal	
	0072 4	72,0	100	AWG2	AWG9-AWG2/0	AWG9-AWG2/0	
MR7	0087 4	87,0	110	AWG1	AWG9-AWG2/0	AWG9-AWG2/0	
	0105 4	105,0	150	AWG1/0	AWG9-AWG2/0	AWG9-AWG2/0	

Table 7. Cable and fuse sizes for Honeywell Smart VFD HVAC (MR7 to MR9)

The cable dimensioning is based on the criteria of the Underwriters' Laboratories UL508C:Cables must be PVC-isolated; Max ambient temperature +86°F, max temperature of cable surface +158°F; Use only cables with concentric copper shield; Max number of parallel cables is 9.

When using cables in parallel, **NOTE HOWEVER** that the requirements of both the cross-sectional area and the max number of cables must be observed.

For important information on the requirements of the grounding conductor, see standard Underwriters' Laboratories UL508C.

For the correction factors for each temperature, see the instructions of standard Underwriters' Laboratories UL508C.

4.2 Brake resistor cables

The SmartVFD HVAC is equipped with terminals for an optional external brake resistor. These terminals are marked with R+ and R- (MR4-MR6) or DC+/R+ and R- (MR7 and bigger).

4.3 Control cables

For information on control cables see chapter Control unit cabling.

4.4 Cable installation

- Before starting, check that none of the components of the drive is live. Read carefully the warnings in chapter 1.
- · Place the motor cables sufficiently far from other cables
- Avoid placing the motor cables in long parallel lines with other cables.
- If the motor cables run in parallel with other cables note the minimum distances between the motor cables and other cables given in table below.

Distance between cables, [in]	Shielded cable, [in]
11.8	≤ 1969
39.4	≤ 7874

- The given distances also apply between the motor cables and signal cables of other systems.
- The maximum lengths of motor cables are 3937 in. (MR4), 5906 in. (MR5 and MR6) and 7874 in. (MR7).
- The motor cables should cross other cables at an angle of 90 degrees.
- If cable insulation checks are needed, see chapter Cable and motor insulation checks.

Start the cable installation according to the instructions below:

4.4.1 Frames MR4 to MR7

1

Strip the motor and mains cables as advised below.

Figure 17. Stripping of cables

2

Open the cover of the drive.

Frame	A1	B1	C1	D1	A2	B2	C2	D2
MR4	.59	1.38	.39	.79	.28	1.97	.28	1.38
MR5	.79	1.57	.39	1.18	.79	2.36	.39	1.57
MR6	.79	3.54	.59	2.36	.79	3.54	.59	2.36
MR7	.79	3.15	.79	3.15	.79	3.15	.79	3.15

WR6	.79	3.54	.59	2.30	.79	3.54	.59	2.30
MR7	.79	3.15	.79	3.15	.79	3.15	.79	3.15
Table 8. Cables stripping lengths [in]								

Figure 18.

3 Remove the screws of the cable protection plate. Do not open the cover of the power unit!

Figure 19.

4 Insert the cable grommets (included in the delivery) in the openings of the cable entry plate (included) as shown in the picture.

Figure 20.

 Insert the cables - supply cable, motor cable and optional brake cable - in the openings of the cable entry plate. Then cut the rubber grommets open to slide the cables through. Do not cut the grommet openings wider than what is necessary for the cables you are using.
 IMPORTANT NOTE FOR IP54 INSTALLATION: To meet the requirements of the enclosure class IP54, the connection between the grommet and the cable must be tight. Therefore, lead the first bit of the cable out of the grommet straight before letting it bend. If this is not possible, the tightness of the connection must be ensured with insulation tape or a cable tie.

Figure 21.

6 Detach the cable clamps and the grounding clamps (Figure 22) and place the cable entry plate with the cables in the groove on the drive frame (Figure 23).

Figure 22.

Figure 23.

7	 Connect the stripped cables as shown in Figure 24. Expose the shield of all three cables in order to make a 360-degree connection with the cable clamp (1). Connect the (phase) conductors of the supply, brake and motor cables into their respective terminals (2). Form the rest of the cable shield of all three cables into "pigtails" and make a grounding connection with a clamp as shown in Figure 24 (3).

Figure 24.

Tightening torques of cable terminals:

Frame	Туре	Tightening torque [Nm]/[lb-in.] Power and motor terminals		Tighteni [Nm]/ EMC gr cla	ng torque [lb-in.] ounding mps	Tightening torque, [Nm]/[lb-in.] Grounding terminals	
		[Nm]	lb-in.	[Nm]	lb-in.	[Nm]	lb-in.
MR4	0003 4—0012 4	0.5—0.6	4.5—5.3	1.5	13.3	2.0	17.7
MR5	0016 4—0031 4	1.2—1.5	10.6—13.3	1.5	13.3	2.0	17.7
MR6	0038 4—0061 4	10	88.5	1.5	13.3	2.0	17.7
MR7	0072 4—0105 4	8/15 [*]	70.8/132.8*	1.5	13.3	8/15*	70.8/132.8*

*. Cable clamping (Ouneva Pressure Terminal Connector)

Table 9. Tightening torques of terminals

Figure 25. Additional protective grounding connector

```
9
```

Re-mount the cable protection plate (Figure 26) and the cover of the drive.

Figure 26. Re-mounting of cover components

4.4.2 Cable and motor insulation checks

1. Motor cable insulation checks

Disconnect the motor cable from terminals U, V and W of the drive and from the motor. Measure the insulation resistance of the motor cable between each phase conductor as well as between each phase conductor and the protective ground conductor. The insulation resistance must be >1M Ω at ambient temperature of 68°F.

- 2. Mains cable insulation checks Disconnect the mains cable from terminals L1, L2 and L3 of the drive and from the mains. Measure the insulation resistance of the mains cable between each phase conductor as well as between each phase conductor and the protective ground conductor. The insulation resistance must be >1M Ω at ambient temperature of 68°F.
- 3. Motor insulation checks

Disconnect the motor cable from the motor and open the bridging connections in the motor connection box. Measure the insulation resistance of each motor winding. The measurement voltage must equal at least the motor nominal voltage but not exceed 1000 V. The insulation resistance must be >1M Ω at ambient temperature of 68°F.

5. COMMISSIONING

Before commissioning, note the following directions and warnings:

Ѧ	Internal components and circuit boards of the drive (except for the galvanically isolated I/O terminals) are live when it is connected to mains potential. Coming into contact with this voltage is extremely dangerous and may cause death or severe injury.
A	The motor terminals U , V , W and the brake resistor terminals B-/B+ are live when the drive is connected to mains, even if the motor is not running .
A	The control I/O-terminals are isolated from the mains potential. However, the relay outputs and other I/O-terminals may have a dangerous control voltage present even when the drive is disconnected from mains.
A	Do not make any connections to or from the drive when it is connected to the mains.
A	After disconnecting the drive from the mains, wait until the fan stops and the indicators on the keypad go out (if no keypad is attached see the indicators on the cover). Wait 5 more minutes before doing any work on the connections of the drive. Do not open the cover before this time has expired. After expiration of this time, use a measuring equipment to absolutely ensure that no voltage is present. Always ensure abscence of voltage before electrical work!
A	Before connecting the frequency converter to mains make sure that the front and cable covers of the drive are closed.

5.1 Commissioning of the SmartVFD HVAC

1	Read carefully the safety instructions in Chapter 1 and above and follow them.
	After the installation, make sure that:
2	 both the drive and the motor are grounded. the mains and motor cables comply with the requirements given in chapter 4.1.1. the control cables are located as far as possible from the power cables, see chapter 4.4. the shields of the shielded cables are connected to protective ground marked with . the wires do not touch the electrical components of the drive. the common inputs of digital input groups are connected to +24V or ground of the I/O terminal or the external supply.
3	Check the quality and quantity of cooling air (chapter 3.2 and Table 4).
4	Check the inside of the drive for condensation.
5	Check that all Start/Stop switches connected to the I/O terminals are in Stop-position.
6	Connect the drive to mains.
7	Run the Startup Wizard (see the Application Manual).

6. CONTROL UNIT

The control unit of the drive consists of the control board and additional boards (option boards) connected to the slot connectors of the control board.

Locations of essential control unit components:

- 1 = Control terminals of the control board
- 2 = Terminals of relay board; **NOTE:** There are two different compilations of relay boards available. See section 6.1.
- 3 = Optional boards

Figure 27. Location of control unit components

When delivered from the factory, the control unit of the drive contains the standard controlling interface - the control terminals of the control board and the relay board - unless otherwise specifically ordered. On the next pages you will find the arrangement of the control I/O and the relay terminals, the general wiring diagram and the control signal descriptions.

The control board can be powered externally (+24V, $\pm 10\%$) by connecting the external power source to terminal #30, see page 36. This voltage is sufficient for parameter setting and for keeping the control unit active. Note however that the measurements of the main circuit (e.g. DC-link voltage, unit temperature) are not available when the mains is not connected.

6.1 Control unit cabling

The basic control unit connections are presented in Figure 28 below. The control board is equipped with 22 fixed control I/O terminals and the relay board with 8 or 9. The relay board is available in two different configurations (see Table 12 and 13). All signal descriptions are given in Tables 11 to 13.

Figure 28.

6.1.1 Control cable sizing

The control cables shall be at least 0.5 mm² screened multicore cables, see Table 5. The maximum terminal wire size is 2.5 mm^2 for the relay and other terminals.

Find the tightening torques of the control and relay board terminals in Table 10 below.

Terminal screw		Tightening torque		
		Nm	lb-in.	
	All I/O and relay terminals (screw M3)	0.5	4.5	

Table 10. Control cable tightening torques

6.1.2 Control terminals and DIP switches

The terminals of the *Basic I/O board* and the *Relay boards* are described below. For more information on the connections, see chapter 7.2.1.

The terminals shown on shadowed background are assigned for signals with optional functions selectable with DIP switches. See more information in chapter 6.1.2.1 on page 36.

		Basic I/O	board	
		т	erminal	Signal
		1	+10 Vref	Reference output
Reference potentiometer 110 k $\!\Omega$		2	Al1+	Analogue input, voltage or current
	· ·	3	Al1-	Analogue input com- mon (current)
Remote reference		4	Al2+	Analogue input, voltage or current
420mA/010V		5	AI2-	Analogue input com- mon (current)
		6	24Vout	24V aux. voltage
		7	GND	I/O ground
		8	DI1	Digital input 1
		9	DI2	Digital input 2
		10	DI3	Digital input 3
Remote control ground		11	СМ	Common for DI1-DI3.
		12	24Vout	24V aux. voltage
	·	13	GND	I/O ground
		14	DI4	Digital input 4
Ļ		15	DI5	Digital input 5
		16	DI6	Digital input 6
1		17	СМ	Common for DI4-DI6.
mA	; \	18	AO1+	Analogue signal (+output)
	/	19	AO-/GND	Analogue output com- mon
 		30	+24 Vin	24V auxiliary input voltage
l I	I I	Α	RS485	Negative
*	★	В	RS485	Positive

 Table 11. Control I/O terminal signals on basic I/O board and connection example

Table 12. Control I/O terminal signals on relay board 1 and connection example

Table 13. Control I/O terminal signals on relay board 2 and connection example

6.1.2.1 selection of terminal functions with dip switches

The shadowed terminals in Table 11 allow for two functional selections each with the so-called *dip switches*. The switches have two positions, left and right. See figure to locate the switches and make appropriate selections for your requirements.

Figure 29. Dip switches

6.2 Fieldbus connection

The drive can be connected to fieldbus either through RS485 or Ethernet. The connection for RS485 is on the basic I/O board (terminals A and B) and the connection for Ethernet is under the drive cover, left to the control keypad. See Figure 30.

Figure 30.

6.2.1 Prepare for use through ethernet

1 Connect the Ethernet cable (see specification on page 39) to its terminal and run the cable through the conduit as shown in Figure 31.

Figure 31.

2	Cut free the opening on the drive cover for the Ethernet cable (protection class
Z	IP21).

Figure 32.

Remount the drive cover. NOTE: When planning the cable runs, remember to 3 keep the distance between the Ethernet cable and the motor cable at a minimum of 30 cm.

Figure 33.

For more detailed information, see the user's manual of the fieldbus you are using.

6.2.1.1 Ethernet cable data

Connector	Shielded RJ45 connector
Cable type	CAT5e STP
Cable length	Max .100m

Table 14.	Ethernet	cable	data
-----------	----------	-------	------

6.2.2 Prepare for use through MS/TP

2	Then connect the cable to its appropriate terminals on Honeywell Smart VFD HVAC AC drive standard terminal block, terminals A and B (A = negative, B =
	positive). See Figure 34.

Figure 34.

6.2.3 RS485 cable data

Connector	2.5 mm ²
Cable type	STP (Shielded Twisted Pair), type Belden 9841 or similar
Cable length	Depends on the used fieldbus. See respective bus manual.

Table 15. RS485 cable data

6.3 Battery installation for Real Time Clock (RTC)

Enabling the functions of the *Real Time Clock (RTC)* requires that a battery is installed in the Smart VFD HVAC drive.

The place for the battery can be found in all frames MR4 to MR9 left to the control keypad (see Figure 35).

Detailed information on the functions of the *Real Time Clock (RTC)* can be found in the Application Manual.

Figure 35. Real Time Clock battery

6.4 Galvanic isolation barriers

The control connections are isolated from the mains potential and the GND terminals are permanently connected to ground. See Figure 36.

The digital inputs are galvanically isolated from the I/O ground. The relay outputs are additionally double-isolated from each other at 300VAC (EN-50178).

Figure 36. Galvanic isolation barriers

7. **PRODUCT DATA**

7.1 Power ratings

	Mains voltage 380-480V, 50-60 Hz, 3~						
		Loa	Motor shaft power				
	Converter	Low	k		400V supply	480V supply	
	type	Rated continuous current I _L [A]	10% overload current [A]	Max current I _S	10% overload 104°F [kW]	10% overload 104°F [HP]	
	0003	3,4	3,7	5,2	1,1	1,5	
	0004	4,8	5,3	6,8	1,5	2,0	
۲4	0005	5,6	6,2	8,6	2,2	3,0	
MF	0008	8,0	8,8	11,2	3,0	5,0	
	0009	9,6	10,6	16,0	4,0	5,0	
	0012**	12,0	13,2	19,2	5,5	7,5	
5	0016	16,0	17,6	24,0	7,5	10	
IR	0023	23,0	25,3	32,0	11,0	15,0	
2	0031***	31,0	34,1	46,0	15,0	20,0	
6	0038	38,0	41,8	62,0	18,5	25,0	
IR	0046	46,0	50,6	76,0	22,0	30,0	
2	0061****	61,0	67,1	92,0	30,0	40,0	
7	0072	72,0	79,2	122,0	37	60	
IR	0087	87,0	95,7	144,0	45	60	
2	0105	105,0	115,5	174,0	55	75	

* See chapter 7.1.1

** Given low loadabilities valid for 480V drives at a switching frequency of 4kHz

 *** Given low loadabilities valid for 480V drives at a switching frequency of 4kHz

**** Given low loadabilities valid for 480V drives at a switching frequency of 4kHz

Table 16. Power ratings, supply voltage 380-480V.

NOTE: The rated currents in given ambient temperatures (in Table 17) are achieved only when the switching frequency is equal to or less than the factory default.

7.1.1 Definitions of overloadability

Low overload =Following continuous operation at rated output current IL, the converter is fed with

110% * I_L for 1 min, followed by a period of I_L . If the duty cycle requires 110% rated current I_L for 1 min in every 10 min, the remaining Example: 9 min must be at rated current or less.

Figure 37. Low overload

	Input voltage U _{in}	380480V; -10%+10%
Mains connection	Input frequency	4766 Hz
	Connection to mains	Once per minute or less
	Starting delay	2 s (MR4 to MR6); 6 s (MR7)
	Output voltage	0-U _{in}
Motor connection	Continuous output cur- rent	I_L :Ambient temperature max. +104°F, overload 1.1 x I_L (1 min./10 min.)
	Starting current	I _S for 2 s every 20 s
	Output frequency	0320 Hz (standard)
	Frequency resolution	0.01 Hz
	Switching frequency (see parameter 3.2.1.9)	1.510 kHz; Defaults: 6 kHz (MR4-6), 4 kHz (MR7) Automatic switching frequency derating in case of overheating
Control characteris- tics	Frequency reference Analogue input Panel reference	Resolution 0.1% (10-bit), accuracy ±1% Resolution 0.01 Hz
	Field weakening point	8320 Hz
	Acceleration time	0.13000 sec
	Deceleration time	0.13000 sec
	Ambient operating temperature	MR4-MR7: I _L : 14°F (no frost)+104°F
	Storage temperature	-40°F+158°F
	Relative humidity	0 to 95% R _H , non-condensing, non-corro- sive
Ambient conditions	Air quality: • chemical vapours • mechanical particles	IEC 60721-3-3, unit in operation, class 3C2 IEC 60721-3-3, unit in operation, class 3S2
	Altitude	100% load capacity (no derating) up to 3,280ft. 1-% derating for each 328ft. above 3,280ft. Max. altitudes: 380480V: 9,842ft. (TN and IT systems)

7.2 SmartVFD HVAC - technical data

Ambient conditions (cont.)	Vibration EN61800-5-1/ EN60068-2-6 Shock EN61800-5-1 EN60068-2-27	5150 Hz Displacement amplitude 1 mm (peak) at 515.8 Hz (MR4MR9) Max acceleration amplitude 1 G at 15.8150 Hz (MR4MR9) UPS Drop Test (for applicable UPS weights) Storage and shipping: max 15 G, 11 ms (in package)
	Enclosure class	IP21/NEMA 1 standard in entire kW/HP range IP54/NEMA12 option Note! Keypad required for IP54/NEMA12
	Immunity	Fulfils EN61800-3 (2004), first and second environment
EMC (at default set- tings)	Emissions	Depend on EMC level. +EMC2: EN61800-3 (2004), Category C2 Honeywell Smart VFD HVAC will be deliv- ered with class C2 EMC filtering, if not oth- erwise specified. Honeywell Smart VFD HVAC can be modi- fied for IT-networks. See chapter1.4.
Safety		EN 61800-5-1 (2007), CE, cUL; (see unit nameplate for more detailed approvals)
Control connections	See chapter 7.2.1.	·
	Overvoltage trip limit Undervoltage trip limit	Yes Yes
	Ground fault protection	In case of ground fault in motor or motor cable, only the drive is protected
Protections	Mains supervision	Yes
	Motor phase supervision	Trips if any of the output phases is missing
	Overcurrent protection	Yes
	Unit overtemperature protection	Yes
	Motor overload protection	Yes
	Motor stall protection	Yes
Protections (cont.)	Motor underload pro- tection	Yes
	Short-circuit protection of +24V and +10V ref- erence voltages	Yes

Table 17. Smart VFD HVAC technical data

7

7.2.1 Technical information on control connections

Basic I/O board						
Terminal	Signal	Technical information				
1	Reference output	+10V, +3%; Maximum current 10 mA				
2	Analogue input, voltage or current	Analogue input channel 1 0- +10V (Ri = 200 k Ω) 4-20 mA (Ri =250 Ω) Resolution 0.1 %, accuracy ±1 % Selection V/mA with dip-switches (see page 38)				
3	Analogue input common (current)	Differential input if not connected to ground; Allows ±20V differential mode voltage to GND				
4	Analogue input, voltage or current	Analogue input channel 1 Defauit: 4-20 mA (Ri =250 Ω) 0-10 V (Ri=200k Ω) Resolution 0.1 %, accuracy ±1 % Selection V/mA with dip-switches (see page 38)				
5	Analogue input common (current)	Differential input if not connected to ground; Allows 20V differential mode voltage to GND				
6	24V aux. voltage	+24V, ±10%, max volt. ripple < 100mVrms; max. 250mA Dimensioning: max. 1000mA/control box. Short-circuit protected				
7	I/O ground	Ground for reference and controls (connected internally frame ground through 1M $\!\Omega)$				
8	Digital input 1	Positive or negative logic				
9	Digital input 2	$Ri = min. 5k\Omega$				
10	Digital input 3	1830V = "1"				
11	Common A for DIN1-DIN6					
12	24V aux. voltage	+24V, ±10%, max volt. ripple < 100mVrms; max. 250mA Dimensioning: max. 1000mA/control box. Short-circuit protected				
13	I/O ground	Ground for reference and controls (connected internally to frame ground through 1M $\!\Omega)$				
14	Digital input 4	Positive or negative logic				
15	Digital input 5	Ri = min. 5k Ω				
16	Digital input 6	1830V = "1"				
17	Common A for DIN1-DIN6					
18	Analogue signal (+output)	Analogue output channel 1, selection 0 -20mA,				
19	Analogue output common	Default: 0-20 mA 0-10V Resolution 0.1 %, accuracy ±2 % Selection V/mA with dip-switches (see page 38)				
30	24V auxiliary input voltage	Can be used as external power backup for the control unit (and fieldbus)				
A	RS485	Differential receiver/transmitter				
В	RS485	Set bus termination with dip switches (see page 38)				

Table 18. Technical information on basic I/O board

Relay board 1	Relay board with two Type 8A/STST and one Type 8A/STDT relays. 5,5 mm isolation between channels. External interface connector See chapter 6.		
Terminal	Signal	Technic	al information
21		Switching capacity	24VDC/8A
22	Relay output 1 [*]		250VAC/8A 125VDC/0.4A
23		Min.switching load	5V/10mA
24		Switching capacity	24VDC/8A
25	Relay output 2*		250VAC/8A 125VDC/0.4A
26		Min.switching load	5V/10mA
32		Switching capacity	24VDC/8A
33	Relay output 3*	Min.switching load	250VAC/8A 125VDC/0.4A 5V/10mA

^{*} If 230VAC is used as control voltage from the output relays, the control circuitry must be powered with a separate isolation transformer to limit short circuit current and overvoltage spikes. This is to prevent welding on the relay contacts. Refer to standard EN 60204-1, section 7.2.9

Table 19.	Technical	information	on	Relay	board	1
-----------	-----------	-------------	----	-------	-------	---

Relay board 2	Relay board with two Type 8A/STST and standard thermistor input. 5,5 mm isolation between channels. External interface connector See chapter 6.			
Terminal	Signal Technical information			
21		Switching capacity	24VDC/8A	
22	Relay output 1 [*]		250VAC/8A 125VDC/0.4A	
23		Min.switching load	5V/10mA	
24		Switching capacity	24VDC/8A	
25	Relay output 2*		250VAC/8A 125VDC/0.4A	
26		Min.switching load	5V/10mA	
28	Thermistor input			
29		$\left \left(1 - \frac{1}{4} \right)^{2} \right = \frac{1}{4} \cdot \frac{1}{16} \times \frac{1}{16} \left(1 - \frac{1}{16} \right)^{2} + \frac{1}{16} \cdot \frac{1}{16} \times \frac{1}{16} \frac$	weasuning vollage 3.5V	

^{*} If 230VAC is used as control voltage from the output relays, the control circuitry must be powered with a separate isolation transformer to limit short circuit current and ovrvoltage spikes. This is to prevent welding on the relay contacts. Refer to standard EN 60204-1, section 7.2.9

Table 20. Technical information on Relay board 2

COMPACT VARIABLE FREQUENCY DRIVE

Automation and Control Solutions

Honeywell International Inc. 1985 Douglas Drive North Golden Valley, MN 55422 customer.honeywell.com Honeywell Limited-Honeywell Limitée 35 Dynamic Drive Toronto, Ontario M1V 4Z9

® U.S. Registered Trademark
© 2009 Honeywell International Inc.
63-2692-01 M.S. 0ï -09

Printed in U.S.A. on recycled paper containing at least 10% post-consumer paper fibers.

Application Manual

Smart VFD HVAC

Variable Frequency Drives for Constant and Variable Torque Applications

INDEX

	Document: DPD0004	I1A
	Version release date: 10.6	.09
	Corresponds to application version AMF11001v	J12
1.	Startup	.2
1.1	Startup Wizard	. 2
1.2	PID Mini-Wizard	. 3
1.3	Multi-pump wizard	.4
2	Granbic keynad - introduction	5
Z .		
2.1	Keypad buttons	. 5
2.2	Keypad display	. 5
2.2.1	Main menu	. 5
2.3	Using the keypad	. 6
2.3.1	Editing values	. 6
2.3.2	Resetting fault	. 6
2.3.3	Local/remote control button	. 7
2.3.4	Help texts	. 7
2.3.5	Adding item to favourites	. 8
2.4	Menu structure	. 8
2.4.1	Quick setup	10
242	Monitor	10
243	Parameters	11
2.1.0	Diagnostics	11
2.4.4	I/O and hardware	13
2.4.5	lisor softings	15
2.4.0		10
2.4.7		10
3.	HVAC Application	18
3.1	Specific functions of SmartVFD	18
3.2	Example of control connections	19
3.3	HVAC Application - Quick setup parameter group	21
3.4	Monitor group	23
3.4.1	Multimonitor	23
3.4.2	Basic	23
343	Timer functions monitoring	24
344	PID1 controller monitoring	24
345	PID2 controller monitoring	24
316	Multi numn monitoring	27
3.4.0	Fieldbug data monitoring	25
3.4.1 2 E	LIVAC Application Application perspector lists	20
3.5	Avac Application - Application parameter lists	20
3.5.1		20
3.5.2		27
3.5.3	Group 3.1: Motor settings	29
3.5.4	Group 3.2: Start/Stop setup	31
3.5.5	Group 3.3: Control reference settings	32
3.5.6	Group 3.4: Ramp & Brakes Setup	34
3.5.7	Group 3.5: I/O Configuration	35
3.5.8	Group 3.7: Prohibit Frequencies	42
3.5.9	Group 3.8: Limit supervisions	43
3.5.1	0Group 3.9: Protections	44
3.5.1	1Group 3.10: Automatic reset	45
3.5.1	2Group 3.11: Timer functions	46
3.5.1	3Group 3.12: PID-controller 1	48
3.5.1	4Group 3.13: PID-controller 2	54

3.5.15Group 3.14: Multi-pump	
3.6 HVAC Application - Additional parameter information	
3.7 HVAC Application - Fault tracing	
3.7.1 Fault appears	
3.7.2 Fault codes	77
3.8 Fieldbus process data out	80

1. **S**TARTUP

1.1 Startup Wizard

In the *Startup Wizard*, you will be prompted for essential information needed by the drive so that it can start controlling your process. During this process, youcan also select the application that best suits your needs. In the Wizard, you will need the following keypad buttons:

Left/Right arrows. Use these to easily move between digits and decimals.

Up/Down arrows. Use these to move between options in menu and to change value.

OK button. Confirm selection with this button.

B<u>AC</u>K RESET

Back/Reset button. Pressing this button, you can return to the previous question in the Wizard. If pressed at the first question, the Startup Wizard will be cancelled.

Once you have connected power to the drive, follow these instructions to easily set up your drive.

	Language selection	Suomi
		Deutsch
1		English
-		Svenska
		Español

2	Daylight saving [*]	Russia US EU OFF
3	Time*	hh:mm:ss
4	Day*	dd.mm.
5	Year*	уууу

* These questions appear if battery is installed

6	Run Startup Wizard?	Yes	
U		No	

STOP	NotRDY		Keypad
	Start	up Wizar 1	:d?
		¥	es No 🖌

Push the OK button unless you want to set all parameter values manually.

Q	Set value for Motor Nominal	<i>Range:</i> 019,200 rpm
0	Speed (according to nameplate)	
Q	Set value for Motor Nominal Cur-	Range: Varies
3	<i>rent</i> (according to nameplate)	
10	Set value for Minimum Frequency	<i>Range:</i> 0.0050.00 Hz
11	Set value for Maximum Frequency	<i>Range:</i> 0.00320.00 Hz

Now the Startup Wizard is done.

The Startup Wizard can be re-initiated by activating the parameter *Restore factory defaults* (par. 6.5.1) in the *Parameter backup* submenu (M6.5).

1.2 PID Mini-Wizard

The *PID mini wizard* is activated from the *Quick Setup* menu. This wizard presupposes that you are going to use the PID controller in the "one feedback / one setpoint" mode. The control place will be I/O A and the process unit '%'.

The PID mini wizard asks for the following values to be set:

1	Keypad Setpoint 1	0.00100.00%
2	Gain	0.00200.00%
3	Integration time	0.00600.00 s

1.3 Multi-pump wizard

The Multi-Pump wizard asks the most important questions for setting up a Multi-Pump system. The PID mini-wizard always precedes the Multi-Pump wizard. The keypad will guide you through the questions which are as below:

1	Keypad Setpoint 1	0.00100.00%
2	Gain	0.00200.00%
3	Integration time	0.00600.00 s

4	Number of motors	14
5	Interlock function	0 = Not used 1 = Enabled
6	Autochange	0 = Disabled 1 = Enabled

If Autochange function is enabled the following three questions will appear. If Autochange will not be used the Wizard jumps directly to question 10.

7	Include FC	0 = Disabled 1 = Enabled
8	Autochange interval	0.03000.0 h
9	Autochange: Frequency Limit	0.0050.00 Hz

10	Bandwidth	0100%
11	Bandwidth delay	03600 s

After this, the keypad will show the digital input and relay output configuration recommended by the application. Write these values down for future reference.

2. **GRAPHIC KEYPAD - INTRODUCTION**

The control keypad is the interface between the drive and the user. It features an LCD display and 9 buttons.

2.1 Keypad buttons

Figure 1. Keypad buttons

2.2 Keypad display

The keypad display indicates the status of the motor and the drive and any irregularities in motor or drive functions. On the display, the user sæs information about his present location in the menu structure and the item displayed.

2.2.1 Main menu

The data on the control keypad are arranged in menus and submenus. Use the Up and Down arrows to move between the menus. Enter the group/item by pressing the OKbutton and return to the former level by pressing the Back/Reset button. See Figure 1.

The *Location field* indicates your current location. The *Status field* gives information about the present status of the drive.

Status field Status field	
STOP/RUN READY/NOT RE	ADY/FAULT
\ / ALARM	
STOP READY Ke	madControl place:
	PC/IO/KEYPAD/FIELDBUS
Parameters	
ID: M3.1	Location field
Motor Settings	and current menu location)
	Activated group/item, Press OK to enter.
Start/Stop Setup	
References (18)	Number of items in the group

Figure 2. Main menu

2.3 Using the keypad

2.3.1 Editing values

Change value of a parameter following the procedure below:

- 1. Locate the parameter.
- 2. Enter the *Edit* mode.
- 3. Set new value with the arrow buttons up/down. You can also move from digit to digit with the arrow buttons left/right if the value is numerical and change then the value with the arrow buttons up/down.
- 4. Confirm change with OK button or ignore change by returning to previous level with Back/ Reset button.

2.3.2 Resetting fault

Instructions for how to reset a fault can be found in chapter 3.7.1 on page 76.

2.3.3 Local/remote control button

The LOC/REM button is used for changing between the *Local* (Keypad) and *Remote* control places. The *control place* is the source of control where the drive can be started and stopped.

In the HVAC drive, the Local control place is always the keypad.

The Remote control place is determined by parameter M1.15 (I/O or Fieldbus).

Change of control place from Remote to Local (keypad).

- 1. Anywhere in the menu structure, push the *Loc/Rem* button.
- 2. Push the Arrow up button to choose the local control place and confirm with the OK button.
- 3. The control page appears where you can set the *Keypad reference* after having pressed the *OK* button. The other values on the page are Multimonitoring values. You can choose which values appear here for monitoring (for this procedure, see page 10).

2.3.4 Help texts

The graphic keypad features instant help and information displays for various items. All parameters offer an instant help display. Select Help and press the OK button. Text information is also available for faults, alarms and the startup wizard.

Figure 3. Help text example

2.3.5 Adding item to favourites

You might need to refer to certain parameter values or other items often. Instead of locating them one by one in the menu structure, you may want to add them to a folder called *Favourites* where they can easily be reached.

To remove an item from the Favourites, see chapter 2.4.7.

STOP 🗂 READY 1/0		STOP C READY I/O		STOP 🗂 READY 1/0
Basic Settings		Motor Nom Freq		Motor Nom Freq
Motor Nom Voltg 230.00 V	OK	Edit	OK	was added to favorites. Press OK
Motor Nom Freq 50.00 Hz	ÖK	(i) Help		to continue.
Motor Nom Speed 1430 rpm		+ Add to favorites		

Figure 4. Adding item to Favourites

2.4 Menu structure

Click on and select the item you wish to receive more information about (electronic manual).

Quick setup	See chapter 3.3.					
Monitor	Multi-monitor					
	Basic					
	Timer functions					
	PID Controller 1					
	PID Controller 2					
	Multi-Pump					
	Fieldbus data					
Parameters	See chapter 3.					
Diagnostics	Active faults					
	Reset faults					
	Fault history					
	Total counters					
	Trip counters					
	Software info					
I/O and hard-	Basic I/O					
ware	Slot D					
	Slot E					
	Real time clock					
	Keypad					
	RS-485					
	Ethernet					
User settings	Language selections					
	Application selection					
	Parameter backup					
Favourites	See chapter 2.3.5					

Table 1. Keypad menus

2.4.1 Quick setup

The Quick Setup Menu includes the minimum set of most commonly used parameters during installation and commissioning. More detailed information on the parameters of this group you will find in chapter 3.3.

2.4.2 Monitor

Multi-monitor

On the multi-monitor page, you can collect nine values that you wish to monitor.

Figure 5. Multi-monitoring page

Change the monitored value by activating the value cell (with arrow buttons left/right) and clicking OK. Then choose a new item on the Monitoring values list and click OK again.

Basic

The basic monitoring values are the actual values of selected parameters and signals as well as statuses and measurements.

Timer functions

Monitoring of timer functions and the Real Time Clock. See chapter 3.4.3.

PID Controller 1

Monitoring of PID controller values. See chapters 3.4.4 and 3.4.5.

PID Controller 2

Monitoring of PID controller values. See chapters 3.4.4 and 3.4.5.

Multi-Pump

Monitoring of values related to the use of several drives. See chapter 3.4.6.

Fieldbus data

Fieldbus data shown as monitor values for debugging purposes at e.g. fieldbuscommissioning. See chapter 3.4.7.

2.4.3 Parameters

Through this submenu, you can reach the application parameter groups and parameters. More information on parameters in chapter 3.

2.4.4 Diagnostics

Under this menu, you can find *Active faults*, *Reset faults*, *Fault history*, *Counters* and *Software info*.

<u>2.4.4.1</u> Active faults

Menu	Function	Note
Active faults	When a fault/faults appear(s), the display with the name of the fault starts to blink. Press OK to return to the Diagnostics menu. The <i>Active faults</i> submenu shows the number of faults. Activate the fault and push OK to see the fault-time data.	The fault remains active until it is cleared with the Reset button (push for 1 s) or witha reset signal from the I/O terminal or fieldbus or by choos- ing <i>Reset faults</i> (see below). The memory of active faults can store the maximum of 10 fauls in the order of appearance.

2.4.4.2 Reset faults

Menu	Function	Note
Reset faults	In this menu you can reset faults. For closer instructions, see chapter 3.7.1.	CAUTION! Remove external Control signal before resetting the fault to prevent unintentional restart of the drive.

2.4.4.3 Fault history

Menu	Function	Note
Fault history	40 latest faults are stored in the Fault history.	Entering the Fault history and click- ing OK on the selected fault shows the fault time data.

<u>2.4.4.4</u> <u>Total counters</u>

Code	Parameter	Min	Max	Unit	Default	ID	Description
M4.4.1	Energy counter			Varies		2291	Amount of energy taken from supply network. No reset.
M4.4.3	Operating time			a d hh:min		2298	Control unit operating time
M4.4.4	Run time			a d hh:min		2293	Motor running time
M4.4.5	Power on time			a d hh:min		2294	Amount of time the power unit has been powered so far. No reset.
M4.4.6	Start command counter					2295	The number of times the power unit has been started.

Table 2. Diagnostics menu, Total counters parameters

<u>2.4.4.5</u> <u>Trip counters</u>

Code	Parameter	Min	Max	Unit	Default	ID	Description
M4.5.1	Energy counter (+)			Varies		2296	Resettable energy counter.
M4.5.3	Operating time			a d hh:min		2299	Resettable.

Table 3. Diagnostics menu, Trip counters parameters

<u>2.4.4.6</u> Software info

Code	Parameter	Min	Max	Unit	Default	ID	Description
M4.6.1	Version number						
M4.6.4	System load	0	100	%		2300	Load on control unit CPU.

Table 4. Diagnostics menu, Software info parameters

2.4.5 I/O and hardware

Various options-related settings are located in this menu.

2.4.5.1 Basic I/O

Monitor here the statuses of inputs and outputs.

Code	Parameter	Min	Max	Unit	Default	ID	Description
M5.1.1	Digital input 1	0	1				Status of digital input signal
M5.1.2	Digital input 2	0	1				Status of digital input signal
M5.1.3	Digital input 3	0	1				Status of digital input signal
M5.1.4	Digital input 4	0	1				Status of digital input signal
M5.1.5	Digital input 5	0	1				Status of digital input signal
M5.1.6	Digital input 6	0	1				Status of digital input signal
M5.1.7	Analog input 1 mode	1	5				Analog input signal mode
M5.1.8	Analog input 1	0	100	%			Status of analog input signal
M5.1.9	Analog input 2 mode	1	5				Analog input signal mode
M5.1.10	Analog input 2	0	100	%			Status of analog input signal
M5.1.11	Analog output 1 mode	1	5				Analog output signal mode
M5.1.12	Analog output 1	0	100	%			Status of analog output sig- nal
M5.1.13	Relay output 1	0	1				Status of digital output signal
M5.1.14	Relay output 2	0	1				Status of digital output signal
M5.1.15	Relay output 3	0	1				Status of digital output signal

Table 5. I/O and Hardware menu, Basic I/O parameters

2.4.5.2 Option board slots

The parameters of this group depend on the option board installed. If no option board is placed in slots D or E, no parameters are visible.

Menu	Function	Note
Slot D	Settings	Option board related settings.
	Monitoring	Monitor option board-related info.
Slot E	Settings	Option board related settings.
	Monitoring	Monitor option board-related info.

2.4.5.3 Real time clock

Code	Parameter	Min	Max	Unit	Default	ID	Description
M5.4.1	Battery state	1	3			2205	Status of battery. 1 = Not installed 2 = Installed 3 = Change battery
M5.4.2	Time			hh:mm:ss		2201	Current time of day
M5.4.3	Day			dd.mm.		2202	Current date
M5.4.4	Year			уууу		2203	Current year
M5.4.5	Daylight saving	0	3		0	2204	Daylight saving rule 0 = Off 1 = EU 2 = US 3 = Russia

Table 6. I/O and Hardware menu, Real time clock parameters

2.4.5.4 Keypad

Code	Parameter	Min	Max	Unit	Default	ID	Description
M5.6.1	Timeout time	0	600	S	0		Time after which the display returns to main menu.
M5.6.2	Contrast	30	70	%	50		Set contrast of the display (3070%).
M5.6.3	Backlight time	0	600	S	5		Set the time until the back- light of the display turns off (060 min). If set to 0 s, backlight is always on.

Table 7. I/O and Hardware menu, Keypad parameters

<u>2.4.5.5</u> Fieldbus

Parameters related to different fieldbus boards can also be found in the *I/O and Hardware* menu. These parameters are explained in more detail in the respective fieldbus manual.

Submenu level 1	Submenu level 2	Submenu level 3			
RS-485	Common settings	Protocol			
	Modbus RTU	Modbus parameters			
		Modbus monitoring			
	N2	N2 parameters			
		N2 monitoring			
	BACNet	BACNet parameters			
		BACNet monitoring			
Ethernet	Common settings				
	Modbus/TCP	Modbus/TCP parameters			
		Modbus/TCP monitoring			
2.4.6 User settings

Code	Parameter	Min	Max	Unit	Default	ID	Description
M6.1	Language selections	1	5			802	1 = English 2 = Suomi 3 = Deutsch 4 = Svenska 5 = Español
M6.2	Application selection						
M6.5	Parameter backup	See chapter 2.4.6.1 below.					
M6.7	Drive name						

Table 8. User settings menu, General settings

2.4.6.1 Parameter backup

Code	Parameter	Min	Max	Unit	Default	ID	Description
M6.5.1	Restore factory defaults						Restores default parameter values and initiates the Startup Wizard
M6.5.2	Save to keypad						Save parameter values to keypad to e.g. copy them to another drive.
M6.5.3	Restore from keypad						Load parameter values from keypad to the drive.

Table 9. User settings menu, Parameter backup parameters

2.4.7 Favourites

Favourites are typically used to collect a set of parameters or monitoring signals from any of the keypad menus. You can add items or parameters to the Favourites folder, see chapter 2.3.5.

To remove an item or a parameter from the Favourites folder, do the following:

STOP C READY I/O		STOP C READY 1/0	
Favourites		Motor Nom Freq	
Motor Nom Freq 50.00 Hz	ок	Monitor	ок
		(j) Help	
		+ Rem from favorites	

Ĩ

3. HVAC APPLICATION

The drive contains a preloaded application for instant use.

The parameters of this application are listed inchapter 3.5 of this manual and explained in more detail in chapter 3.6.

3.1 Specific functions of SmartVFD

The SmartVFD HVAC is aneasy-to-use application for basic Pump and Fan applications where only one motor and one drive is needed and also offers extensive possibilities for PID control.

Features

- **Loc/Rem-button** for easy change between Local (keypad) and Remote control place. The remote control place is selectable by parameter (I/O or Fieldbus)
- Control page for easy operation and monitoring of the most essential values.
- Run interlock input (Damper interlock). Drive will not start before this input is activated.
- Different pre-heat modes used to avoid condensation problems
- Maximum output frequency 320Hz
- **Real-time clock and timer functions** available (optional battery required). Possible to program 3 time channels to achieve different functions on the drive (e.g. Start/Stop and Preset frequencies)
- External PID-controller available. Can be used to control e.g. a valve using the drive's I/O
- Sleep mode function which automatically enables and disables drive running with user defined levels to save energy.
- 2-zone PID-controller (2 different feedback signals; minimum and maximum control)
- Two setpoint sources for the PID-control. Selectable with digital input
- **PID setpoint boost function**. If the drive is running at minimum speed, then an increase of the PID setpoint will force the drive to sleep mode
- Feedforward function to improve the response to the process changes
- Process value supervision
- Multi-Pump control

3.2 Example of control connections

	Basic	I/O board		
	Те	erminal	Signal	Default
<u>-</u> (`\	- 1	+10 Vref	Reference output	
	2	Al1+	Analog input,	
110 kΩ			voltage or current [*]	Voltage
	3	AI1-	Analog input common (cur- rent)	, indige
Remote reference	_ 4	Al2+	Analog input, voltage or current	Current
(programmable)	5	AI2-	Analog input common (cur- rent)	Garrent
·	- 6	24Vout	24V aux. voltage	
	7	GND	I/O ground	
·	8	DI1	Digital input 1	Start FWD
	9	DI2	Digital input 2	
· · · · · · · · · · · · · · · · · · ·	10	DI3	Digital input 3	Fault
Pomoto control	11	CM	Common A for DIN1-DIN6	
ground	12	24Vout	24V aux. voltage	
; ;	- 13	GND	I/O ground	
		DI4	Digital input 4	Preset freq select 1
		DI5	Digital input 5	Preset freq select 2
	16	DI6	Digital input 6	Fault reset
	17	CM	Common A for DIN1-DIN6	
	18	AO1+	Analog signal (+output)	OP freq
	19	AO-/GND	Analog output common	
	30	+24 Vin	24V auxiliary input voltage	
↓ ↓ ↓ ↓	Α	RS485	Differential receiver/transmit- ter	
To Relay board 1 or 2	В	RS485	Differential receiver/transmit- ter	

*Selectable with DIP switches, see Installation Manual

Table 10. Connection example, basic I/O board

From Basic I/O board	Relay	board 1		
From term. From term. #6 or 12 #13	Terminal		Signal	
	21	R01/1 NC	Relay output 1	RUN
RUN L — — —	22	RO1/2 CM		
└ -(╳) ►	- 23	RO1/3 NO		
	24	R02/1 NC	Relay output 2	FAULT
220	- 25	RO2/2 CM		
VAC	- 26	RO2/3 NO		
	32	RO3/1 CM	Relay output 3	READY
	33	RO3/2 NO		

Table 11. Connection example, Relay board 1

Table 12. Connection example, Relay board 2

3.3 HVAC Application - Quick setup parameter group

The Quick Setup parameter group is a collection of parameters that are most commonly used during installation and commissioning. They are collected in the first parameter group so that they can be found fast and easily. They can, however, be also reached and edited in their actual parameter groups. Changing a parameter value in theQuick setup group also changes the value of this parameter in its actual group.

Code	Parameter	Min	Max	Unit	Default	ID	Description
M1.1	Motor nominal voltage	180.0	690.0	V	230.0	110	Find this value U _n on the rating plate of the motor. See page 29.
M1.2	Motor nominal fre- quency	0.00	320.00	Hz	50.00	111	Find this value f _n on the rat- ing plate of the motor. See page 29.
M1.3	Motor nominal speed	0	19200	rpm	1420	112	Find this value n _n on the rat- ing plate of the motor.
M1.4	Motor nominal current	0	Varies	A	Varies	113	Find this value I _n on the rat- ing plate of the motor.
M1.5	Motor Cos Phi	0.00	1.00		0.80	120	Find this value on the rating plate of the motor
M1.6	Motor nominal power	0.00	Varies	kW	1.50	116	Find this value I _n on the rat- ing plate of the motor.
M1.7	Motor current limit	Varies	Varies	А	Varies	107	Maximum motor current from AC drive
M1.8	Minimum frequency	0.00	50.00	Hz	Varies	101	Minimum allowed frequency reference
M1.9	Maximum frequency	20.00	320.00	Hz	50.00	102	Maximum allowed frequency reference
M1.10	I/O control reference A selection	1	7		7	117	Selection of ref source when control place is I/O A. See page 32 for selections.
M1.11	Preset frequency 1	P3.3.1	P3.3.2	Hz	10.00	105	Select with digital input: Preset frequency selection B0 (M3.5.1.18)
M1.12	Preset frequency 2	P3.3.1	P3.3.2	Hz	15.00	106	Select with digital input: Preset frequency selection B1 (M3.5.1.19)
M1.13	Acceleration time 1	0.1	3000.0	s	20.0	103	Time to accelerate from zero to maximum frequency
M1.14	Deceleration time 1	0.1	3000.0	S	20.0	104	Time to decelerate from min- imum to zero frequency
M1.15	Remote control place	1	2		1	172	Selection of remote control place (start/stop) 1 = I/O 2 = Fieldbus
M1.16	Automatic reset	0	1		0	731	0 = Disabled 1 = Enabled
M1.17	PID Mini-Wizard	0	1		0	1803	0 = Inactive 1 = Activate See chapter 1.2.

M1.18	Multi-Pump Wizard	0	1		0		0 = Inactive 1 = Activate See chapter 1.3.
-------	-------------------	---	---	--	---	--	--

Table 13. Quick setup parameter group

3.4 Monitor group

The drive provides you with a possibility to monitor the actual values of parameters and signals as well as statuses and measurements. Some of the values to be monitored are customizable.

3.4.1 Multimonitor

On the multi-monitor page, you can collect nine values that you wish to monitor. See page 10 for more information.

3.4.2 Basic

See Table 14 in which the basic monitoring values are presented.

	Monitoring value	Unit	ID	Description
M2.2.1	Output frequency	Hz	1	Output frequency to motor
M2.2.2	Frequency reference	Hz	25	Frequency reference to motor control
M2.2.3	Motor speed	rpm	2	Motor speed in rpm
M2.2.4	Motor current	А	3	
M2.2.5	Motor torque	%	4	Calculated shaft torque
M2.2.7	Motor power	%	5	Total power consumption of AC drive
M2.2.8	Motor power	kW/hp	73	
M2.2.9	Motor voltage	V	6	
M2.2.10	DC link voltage	V	7	
M2.2.11	Unit temperature	°C	8	Heatsink temperature
M2.2.12	Motor temperature	%	9	Calculated motor temperature
M2.2.13	Analog input 1	%	59	Signal in percent of used range
M2.2.14	Analog input 2	%	60	Signal in percent of used range
M2.2.15	Analog output 1	%	81	Signal in percent of used range
M2.2.17	Drive Status Word		43	Bit coded word B1=Ready B2=Run B3=Fault B6=RunEnable B7=AlarmActive B10=DC Current in stop B11=DC Brake Active B12=RunRequest B13=MotorRegulatorActive

Table 14. Monitoring menu items

3.4.3 Timer functions monitoring

Here you can monitor values of timer functions and the Real Time Clock.

	Monitoring value	Unit	ID	Description
M2.3.1	TC 1, TC 2, TC 3		1441	Possible to monitor the statuses of the three Time Channels (TC)
M2.3.2	Interval 1		1442	Status of timer interval
M2.3.3	Interval 2		1443	Status of timer interval
M2.3.4	Interval 3		1444	Status of timer interval
M2.3.5	Interval 4		1445	Status of timer interval
M2.3.6	Interval 5		1446	Status of timer interval
M2.3.7	Timer 1		1447	Remaining time on timer if active
M2.3.8	Timer 2		1448	Remaining time on timer if active
M2.3.9	Timer 3		1449	Remaining time on timer if active
M2.3.10	Real time clock		1450	

Table 15. Monitoring of timer functions

3.4.4 PID1 controller monitoring

	Monitoring value	Unit	ID	Description
M2.4.1	PID1 setpoint	Varies	20	Process units selected with parameter
M2.4.2	PID1 feedback	Varies	21	Process units selected with parameter
M2.4.3	PID1 error value	Varies	22	Process units selected with parameter
M2.4.4	PID1 output	%	23	Output to motor control or external control (AO)
M2.4.5	PID1 status		24	0=Stopped 1=Running 3=Sleep mode

Table 16. PID1-controller value monitoring

3.4.5 PID2 controller monitoring

	Monitoring value	Unit	ID	Description
M2.5.1	PID2 setpoint	Varies	83	Process units selected with parameter
M2.5.2	PID2 feedback	Varies	84	Process units selected with parameter
M2.5.3	PID2 error value	Varies	85	Process units selected with parameter
M2.5.4	PID2 output	%	86	Output to external control (AO)
M2.5.5	PID2 status		87	0=Stopped 1=Running

Table 17. PID2-controller value monitoring

3.4.6 Multi-pump monitoring

	Monitoring value	Unit	ID	Description
M2.6.1	Motors running		30	The number of motors running when Multi-Pump function is used.
M2.6.2	Autochange		1113	Informs the user if autochange is requested.

Table 18. Multi-pump monitoring

3.4.7 Fieldbus data monitoring

	Monitoring value	Unit	ID	Description
M2.8.1	FB Control Word		874	Fieldbus control word used by application in bypass mode/format. Depending on the fieldbus type or profile the data can be modified before sent to application.
M2.8.2	FB speed reference		875	Speed reference scaled between minimum and maxi- mum frequency at the moment it was received by the application. Minimum and maximum frequencies can changed after the reference was received without affect- ing the reference.
M2.8.3	FB data in 1		876	Raw value of process data in 32-bit signed format
M2.8.4	FB data in 2		877	Raw value of process data in 32-bit signed format
M2.8.5	FB data in 3		878	Raw value of process data in 32-bit signed format
M2.8.6	FB data in 4		879	Raw value of process data in 32-bit signed format
M2.8.7	FB data in 5		880	Raw value of process data in 32-bit signed format
M2.8.8	FB data in 6		881	Raw value of process data in 32-bit signed format
M2.8.9	FB data in 7		882	Raw value of process data in 32-bit signed format
M2.8.10	FB data in 8		883	Raw value of process data in 32-bit signed format
M2.8.11	FB Status Word		864	Fieldbus status word sent by application in bypass mode/format. Depending on the FB type or profile the data can be modified before sent to the FB.
M2.8.12	FB speed actual		865	Actual speed in %. 0 and 100% correspond to minimum and maximum frequencies respectively. This is continu- ously updated depending on the momentary min and max frequencies and the output frequency.
M2.8.13	FB data out		866	Raw value of process data in 32-bit signed format
M2.8.14	FB data out		867	Raw value of process data in 32-bit signed format
M2.8.15	FB data out		868	Raw value of process data in 32-bit signed format
M2.8.16	FB data out		869	Raw value of process data in 32-bit signed format
M2.8.17	FB data out		870	Raw value of process data in 32-bit signed format
M2.8.18	FB data out		871	Raw value of process data in 32-bit signed format
M2.8.19	FB data out		872	Raw value of process data in 32-bit signed format
M2.8.20	FB data out		873	Raw value of process data in 32-bit signed format

Table 19. Fieldbus data monitoring

3.5 HVAC Application - Application parameter lists

Find the parameter menu and the parameter groups as guided below.

The HVAC Application embodies the following parameter groups:

Menu and Parameter group	Description
Group 3.1: Motor settings	Basic and advanced motor settings
Group 3.2: Start/Stop setup	Frequency reference setup
Group 3.3: Control reference settings	Acceleration/Deceleration setup
Group 3.4: Ramp & Brakes Setup	Start and stop functions
Group 3.5: I/O Configuration	I/O programming
Group 3.7: Prohibit Frequencies	Prohibit frequencies programming
Group 3.8: Limit supervisions	Programmable limit controllers
Group 3.9: Protections	Protections configuration
Group 3.10: Automatic reset	Auto reset after fault configuration
Group 3.11: Timer functions	Configuration of 3 timers based on Real Time Clock.
Group 3.12: PID-controller 1	Parameters for PID Controller 1. Motor control or external usage.
Group 3.13: PID-controller 2	Parameters for PID Controller 2. External usage.
Group 3.14: Multi-pump	Parameters for multi-pump usage.

Table 20. Parameter groups

3.5.1 Column explanations

	•
Code	 Location indication on the keypad; Shows the operator the parameter number.
Parameter	= Name of parameter
Min	= Minimum value of parameter
Max	= Maximum value of parameter
Unit	= Unit of parameter value; Given if available
Default	= Value preset by factory
ID	= ID number of the parameter
Description	 Short description of parameter values or its function
VACON	 Apply TTF programming to this parameter
Ĭ.	= More information on this parameter available; Click the parameter name

3.5.2 TTF programming

The programming of digital inputs is very flexible. There are no digital terminals assigned only for certain function. You can choose the terminal of your choice for the certain function, in other words, functions appear as parameters which the operator defines a certain input for.

Also *Time Channels* can be assigned to digital inputs with TTF. See more information on page 46.

The parameters which the *TTF programming method* is applied to are marked with the TTF-symbol (see chapter 3.5.1).

<u>3.5.2.1</u> Example programming

The selectable values of the parameters programmed with the TTF method are of type

DigIN SlotA.1

in which

'DigIN' stands for digital input.

'Slot_' refers to the board; **A** and **B** are basic boards, **D** and **E** are option boards (see Figure 6). The parameter (signal) is not connected to any terminal, i.e. it is not used, if, instead of a letter, the word Slot is followed by a **'0'** (for example **DigIN Slot0.1**).

The number after the board letter refers to the respective terminal on the selected board. Hence, **SlotA.1** means terminal DIN1 on the basic board in board slot A.

Figure 6. Option board slots

EXAMPLE:

You want to connect the *Control signal 2 A* (parameter M3.5.1.2) to digital input DI2 on Basic I/O board.

STOP	READY		Keypad		STOP		READY		Keypad			STOP		READY		Keypad
	Digi	tal Inpu	lts		() ()		Ctrl	signal	2 A			()		Ctrl	signal	2 A
	ID:404	M3.5.1.2				II):	M3.5.1.2					I	D:404	M3.5.1.2	
()	Ctrl Signal DigIn S	. 1 A SlotA.1		ок	Î	Edi	t			Oł	(\$	Di	gIN Slot	<u>0</u> .1	
Î	Ctrl Signal DigIn S	. 2 A Slot0.1			i	Hel	P									
Î	Ctrl Signal DigIn S	. 1 B Slot0.1			Ð	Add	to favo	rites				Min: Max:				

3	Change the value: The editable part of the value (DigIN Slot0) is underlined and blinking. Change the slot or assign to Time Channel with the arrow keys up and down. Make the terminal value (.1) editable by pressing the right key once and change the value with arrow keys up and down.
	Accept the change with OK button or return to previous menu level with BACK/ RESET button.

3.5.3 Group 3.1: Motor settings

<u>3.5.3.1</u> Basic Settings

Code	Parameter	Min	Мах	Unit	Default	ID	Description
M3.1.1.1	Motor nominal voltage	180.0	690.0	V	Varies	110	Find this value U_n on the rating plate of the motor. This parameter sets the voltage at the field weakening point to 100% * U_{nMotor} . Note also used connection (Delta/Star).
M3.1.1.2	Motor nominal fre- quency	0.00	320.00	Hz	Varies	111	Find this value f _n on the rat- ing plate of the motor.
M3.1.1.3	Motor nominal speed	0	19200	rpm	Varies	112	Find this value n _n on the rat- ing plate of the motor.
M3.1.1.4	Motor nominal current	Varies	Varies	А	Varies	113	Find this value I _n on the rat- ing plate of the motor.
M3.1.1.5	Motor Cos Phi	0.00	1.00		0.80	120	Find this value on the rating plate of the motor
M3.1.1.6	Motor nominal power	0.00	Varies	kW	1.50	116	Find this value In on the rat- ing plate of the motor.
M3.1.1.7	Motor current limit	Varies	Varies	А	Varies	107	Maximum motor current from drive
M3.1.1.8	Supply voltage	Varies	Varies	V	Varies	1200	

Table 21. Basic motor settings

3.5.3.2 Motor Control Settings

Code	Parameter	Min	Мах	Unit	Default	ID	Description
M3.1.2.1	Switching frequency	1.5	Varies	kHz	Varies	601	Motor noise can be mini- mised using a high switch- ing frequency. Increasing the switching frequency reduces the capacity of the drive. It is recommended to use a lower frequency when the motor cable is long in order to minimize capaci- tive currents in the cable.
M3.1.2.3	Motor preheat function	0	3		0	1225	0 = Not used 1 = Always in stop state 2 = Controlled by DI 3 = Temperature limit (heat- sink) NOTE: Virtual digital input can be activated by RTC
M3.1.2.4	Motor preheat temper- ature limit	-20	80	°C	0	1226	Motor preheat is switched on when the heatsink tem- perature goes below this level (if par. M3.1.2.3 is set to <i>Temperature limit</i> . If limit is e.g. 10°C feeding current starts at 10 °C and stops at 11°C (1-degree hysteresis).
M3.1.2.5	Motor preheat current	0	0.5*IL	A	Varies	1227	DC current for pre-heating of motor and drive in stop state. Activated by digital input or by temperature limit.

Table 22. Advanced motor settings

3.5.4 Group 3.2: Start/Stop setup

	Code	Parameter	Min	Max	Unit	Default	ID	Description
	M3.2.1	Remote control place	0	1		0	172	Selection of remote control place (start/stop). Can be used to change back to remote control from PC e.g. in case of a broken panel. 0=I/O control 1=Fieldbus control
	M3.2.2	Local/Remote	0	1		0	211	Switch between local and remote control places 0=Remote 1=Local
	M3.2.3	Keypad stop button	0	1		0	114	0=Stop button always enabled (Yes) 1=Limited function of Stop button (No)
	M3.2.4	Start function	0	1		0	505	0=Ramping 1=(Conditional) flying start
	M3.2.5	Stop function	0	1		0	506	0=Coasting 1=Ramping
∎∎₽	M3.2.6	I/O A start/stop logic	0	2		0	300	CtrlSgn 1CrtlSgn 2 OStart fwd Start fwd 1Start fwd Stop pulse pulse(3-wire) 2Start fwd pulse
	M3.2.7	I/O B start/stop logic	0	2		0	363	See above.
	M3.2.8	Fieldbus start logic	0	1		0	889	0=Rising edge required 1=State

Table 23. Start/Stop Setup menu

3.5.5 Group 3.3: Control reference settings

	Code	Code Parameter		Min Max		Default ID		Description	
	M3.3.1	Minimum frequency	0.00	M3.3.2	Hz	20.00	101	Minimum allowed frequency reference	
	M3.3.2	Maximum frequency	M3.3.1	320.00	Hz	50.00	102	Maximum allowed frequency reference	
	M3.3.3	I/O control reference A selection	1	7		7	117	Selection of ref source when control place is I/O A 1 = Preset Frequency 0 2 = Keypad reference 3 = Fieldbus 4 = Al1 5 = Al2 6 = Al1+Al2 7 = PID 1 reference	
	M3.3.4	I/O control reference B selection	1	7		4	131	Selection of ref source when control place is I/O B. See above. NOTE : I/O B control place can only be forced active with digital input (M3.5.1.5).	
	M3.3.5	Keypad Ctrl Refer- ence selection	1	7		2	121	Selection of ref source when control place is keypad: 1 = Preset Frequency 0 2 = Keypad 3 = Fieldbus 4 = Al1 5 = Al2 6 = Al1+Al2 7 = PID 1 reference	
	M3.3.6	Keypad reference	0.00	M3.3.2	Hz	0.00	184	The frequency reference can be adjusted on the keypad with this parameter.	
	M3.3.7	Keypad reference copy	0	2		1	181	Selects function for Run state & Reference copy when changing to Keypad control: 0 = Copy reference 1 = Copy ref & Run State 2 = No copying	
	M3.3.8	Fieldbus control refer- ence selection	1	7		4	122	Selection of ref source when control place is Fieldbus: 1 = Al1 2 = Al2 3 = Keypad 4 = Fieldbus 5 = Preset frequency 0 6 = Al1+Al2 7 = PID 1 reference	
∎₽	M3.3.9	Preset frequency mode	0	1		0	182	0 = Binary coded 1 = Number of inputs. Preset frequency is selected accord- ing to how many of preset speed digital inputs are active	
	M3.3.10	Preset frequency 0	M3.3.1	M3.3.2	Hz	5.00	180	Basic preset frequency 0 when selected by Control ref- erence parameter (M3.3.3).	

∎Æ	M3.3.11	Preset frequency 1	M3.3.1	M3.3.2	Hz	10.00	105	Select with digital input: Preset frequency selection B0 (M3.5.1.18)
∎Æ	M3.3.12	Preset frequency 2	M3.3.1	M3.3.2	Hz	15.00	106	Select with digital input: Preset frequency selection B1 (M3.5.1.19)
	M3.3.13	Preset frequency 3	M3.3.1	M3.3.2	Hz	20.00	126	Select with digital inputs: Preset frequency selection B0 & B1
	M3.3.14	Preset frequency 4	M3.3.1	M3.3.2	Hz	25.00	127	Select with digital input: Preset frequency selection B2 (M3.5.1.20)
	M3.3.15	Preset frequency 5	M3.3.1	M3.3.2	Hz	30.00	128	Select with digital inputs: Preset frequency selection B0 & B2
	M3.3.16	Preset frequency 6	M3.3.1	M3.3.2	Hz	40.00	129	Select with digital inputs: Preset frequency selection B1 & B2
	M3.3.17	Preset frequency 7	M3.3.1	M3.3.2	Hz	50.00	130	Select with digital inputs: Preset frequency selection B0 & B1 & B2
	M3.3.18	Preset alarm fre- quency	M3.3.1	M3.3.2	Hz	25.00	183	This frequency used when fault response is Alarm+pre- set frequency

Table 24. Control reference settings

3.5	.6	Group	3.4:	Ramp a	&	Brakes	Setup
-----	----	-------	------	--------	---	--------	-------

Code	Parameter	Min	Max	Unit	Default	ID	Description
M3.4.1	Ramp 1 shape	0.0	10.0	S	0.0	500	S-curve time ramp 1
M3.4.2	Acceleration time 1	0.0	300.0	S	20.0	103	Defines the time required for the output frequency to increase from zerofrequency to maximum frequency
M3.4.3	Deceleration time 1	0.0	300.0	S	20.0	104	Defines the time required for the output frequency to decrease from maximum fre- quency to zero frequency
M3.4.4	Start magnetizing time	0,00	600,00	s	0,00	516	This parameter defines the time for how long DC current is fed to motor before acceleration starts.
M3.4.5	Start magnetizing cur- rent	0	Varies	А	Varies	517	
M3.4.6	DC braking time at stop	0,00	600,00	s	0,00	508	Determines if braking is ON or OFF and the braking time of the DC-brake when the motor is stopping.
M3.4.7	DC brake current	0	Varies	A	Varies	507	Defines the current injected into the motor during DC- braking. 0 = Disabled
M3.4.8	Frequency to start DC braking at ramp stop	0,10	10,00	Hz	1,50	515	The output frequency at which the DC-braking is applied.
M3.4.9	Flux braking	0	1		0	520	0=Disabled 1=Enabled
M3.4.10	Flux braking current	0	Varies	А	Varies	519	Defines the current level for flux braking.

Table 25. Ramp and brakes setup

3.5.7 Group 3.5: I/O Configuration

<u>3.5.7.1</u> **Digital inputs**

Digital inputs are very flexible to use. Parameters are functions that are connected to the required digital input terminal. The digital inputs are represented as, for example, DigIN Slot A.2, meaning the second input on slot A.

It's also possible to connect the digital inputs to time channels which are also represented as terminals.

NOTE! Apply TTF programming method to these parameters. For more detailed information, see chapter 3.5.2.

	Code	Parameter	Default	ID	Description
	M3.5.1.1	Control signal 1 A	DigIN SlotA.1	403	Start signal 1 when control place is I/O 1 (FWD)
	M3.5.1.2	Control signal 2 A	DigIN Slot0.1	404	Start signal 2 when control place is I/O 1 (REV)
	M3.5.1.3	Control signal 1 B	DigIN Slot0.1	423	Start signal 1 when control place is I/O B
	M3.5.1.4	Control signal 2 B	DigIN Slot0.1	424	Start signal 2 when control place is I/O B
	M3.5.1.5	I/O B control force	DigIN Slot0.1	425	TRUE = Force the control place to I/O B
	M3.5.1.6	I/O B reference force	DigIN Slot0.1	343	TRUE = Used frequency reference is speci- fied by I/O reference B parameter (M3.3.4).
	M3.5.1.7	External fault close	DigIN Slot0.1	405	FALSE = OK TRUE = External fault
	M3.5.1.8	External fault open	DigIN Slot0.2	406	FALSE = External fault TRUE = OK
_	M3.5.1.9	Fault reset	DigIN SlotA.6	414	Resets all active faults
	M3.5.1.10	Run enable	DigIN Slot0.2	407	Must be on to set drive in Ready state
	M3.5.1.11	Run interlock 1	DigIN Slot0.2	1041	Drive may be ready but start is blocked as long as interlock is on (Damper interlock).
	M3.5.1.12	Run interlock 2	DigIN Slot0.2	1042	As above.
	M3.5.1.13	Motor preheat ON	DigIN Slot0.1	1044	FALSE = No action TRUE = Uses the motor preheat DC-Current in Stop state Used when parameter M3.1.2.3 is set to 2.
	M3.5.1.15	Preset frequency selec- tion 0	DigIN Slot0.1	419	Binary selector for Preset speeds (0-7). See page 33.
	M3.5.1.16	Preset frequency selec- tion 1	DigIN Slot0.1	420	Binary selector for Preset speeds (0-7). See page 33.
	M3.5.1.17	Preset frequency selec- tion 2	DigIN Slot0.1	421	Binary selector for Preset speeds (0-7). See page 33.
	M3.5.1.18	Timer 1	DigIN Slot0.1	447	Rising edge starts Timer 1 programmed in Group 3.11: Timer functions parameter group
	M3.5.1.19	Timer 2	DigIN Slot0.1	448	See above
	M3.5.1.20	Timer 3	DigIN Slot0.1	449	See above
	M3.5.1.21	PID1 setpoint boost	DigIN Slot0.1	1047	FALSE = No boost TRUE = Boost
	M3.5.1.22	PID1 select setpoint	DigIN Slot0.1	1046	FALSE = Setpoint 1 TRUE = Setpoint 2

M3.5.1.23	PID2 start signal	DigIN Slot0.2	1049	FALSE = PID2 in stop mode TRUE = PID2 regulating This will have no effect if PID2 controller is not enabled in the Basic menu for PID2
M3.5.1.24	PID2 select setpoint	DigIN Slot0.1	1048	FALSE = Setpoint 1 TRUE = Setpoint 2
M3.5.1.25	Motor 1 interlock	DigIN SlotA.2	426	FALSE = Not active TRUE = Active
M3.5.1.26	Motor 2 interlock	DigIN SlotA.3	427	FALSE = Not active TRUE = Active
M3.5.1.27	Motor 3 interlock	DigIN SlotA.4	428	FALSE = Not active TRUE = Active
M3.5.1.28	Motor 4 interlock	DigIN SlotA.5	429	FALSE = Not active TRUE = Active

Table 26. Digital input settings

Code	Parameter	Min	Max	Unit	Default	ID	Description
M3.5.2.1	AI1 signal selection				AnIN SlotA.1	377	Connect the Al1 signal to the analog input of your choice with this parameter. Programmable (TTF)
M3.5.2.2	AI1 signal filter time	0.00	300.00	S	1.00	378	Filter time for analog input
M3.5.2.3	Al1 signal range	0	1		0	379	0 = 010V / 020mA 1 = 210V / 420mA
M3.5.2.4	AI1 custom. min	-160.00	160.00	%	0.00	380	Custom range min setting 20% = 4-20 mA/2-10 V
M3.5.2.5	AI1 custom. max	-160.00	160.00	%	100.00	381	Custom range max setting
M3.5.2.6	AI1 signal inversion	0	1		0	387	0 = Normal 1 = Signal inverted
M3.5.2.7	AI2 signal selection				AnIN SlotA.2	388	See M3.5.2.1.
M3.5.2.8	AI2 signal filter time	0.00	300.00	S	1.00	389	See M3.5.2.2.
M3.5.2.9	Al2 signal range	0	1		1	390	0 = 010V / 020mA 1 = 210V / 420mA
M3.5.2.10	Al2 custom. min	-160.00	160.00	%	0.00	391	See M3.5.2.4.
M3.5.2.11	Al2 custom. max	-160.00	160.00	%	100.00	392	See M3.5.2.5.
M3.5.2.12	Al2 signal inversion	0	1		0	398	See M3.5.2.6.
M3.5.2.13	AI3 signal selection				AnIN Slot0.1	141	Connect the Al3 signal to the analog input of your choice with this parameter. Programmable (TTF)
M3.5.2.14	AI3 signal filter time	0.00	300.00	S	1.00	142	Filter time for analog input
M3.5.2.15	Al3 signal range	0	1		0	143	0 = 010V / 020mA 1 = 210V / 420mA
M3.5.2.16	AI3 custom. min	-160.00	160.00	%	0.00	144	20% = 4-20 mA/2-10 V
M3.5.2.17	AI3 custom. max	-160.00	160.00	%	100.00	145	Custom range max setting
M3.5.2.18	AI3 signal inversion	0	1		0	151	0 = No inversion 1 = Signal inverted
M3.5.2.19	AI4 signal selection				AnIN Slot0.1	152	See M3.5.2.13. Programma- ble (TTF)
M3.5.2.20	Al4 signal filtering time	0.00	300.00	S	1.00	153	See M3.5.2.14.
M3.5.2.21	Al4 signal range	0	1		0	154	0 = 010V / 020mA 1 = 210V / 420mA
M3.5.2.22	Al4 custom. min	-160.00	160.00	%	0.00	155	See M3.5.2.16.
M3.5.2.23	Al4 custom. max	-160.00	160.00	%	100.00	156	See M3.5.2.17.
M3.5.2.24	Al4 signal inversion	0	1		0	162	See M3.5.2.18.
M3.5.2.25	AI5 signal selection				AnIN Slot0.1	188	Connect the AI5 signal to the analog input of your choice with this parameter. Programmable (TTF)
M3.5.2.26	AI5 signal filter time	0.00	300.00	S	1.00	189	Filter time for analog input
M3.5.2.27	AI5 signal range	0	1		0	190	0 = 010V / 020mA 1 = 210V / 420mA
M3.5.2.28	AI5 custom. min	-160.00	160.00	%	0.00	191	20% = 4-20 mA/2-10 V
M3.5.2.29	AI5 custom. max	-160.00	160.00	%	100.00	192	Custom range max setting

<u>3.5.7.2</u> <u>Analog inputs</u>

M3.5.2.30	AI5 signal inversion	0	1		0	198	0 = Normal 1 = Signal inverted
M3.5.2.31	Al6 signal selection				AnIN Slot0.1	199	See M3.5.2.13. Programma- ble (TTF)
M3.5.2.32	Al6 signal filtering time	0.00	300.00	S	1.00	200	See M3.5.2.14.
M3.5.2.33	Al6 signal range	0	1		0	201	0 = 010V / 020mA 1 = 210V / 420mA
M3.5.2.34	Al6 custom. min	-160.00	160.00	%	0.00	202	See M3.5.2.16.
M3.5.2.35	Al6 custom. max	-160.00	160.00	%	100.00	203	See M3.5.2.17.
M3.5.2.36	Al6 signal inversion	0	1		0	209	See M3.5.2.18.

Table 27. Analog input settings

Code	Parameter	Min	Max	Unit	Default	ID	Description
M3.5.3.2.1	Basic R01 function	0	35		27	11001	Function selection for Basic R01: 0 = None 1 = Ready 2 = Run 3 = General fault 4 = General fault inverted 5 = General alarm 6 = Reversed 7 = At speed 8 = Motor regulator active 9 = Preset speed active 10 = Keypad control active 11 = I/O B control active 11 = I/O B control active 12 = Limit supervision 1 13 = Limit supervision 2 14 = Start command active 15 = Reserved 16 = Reserved 17 = RTC time chnl 1 control 18 = RTC time chnl 2 control 19 = RTC time chnl 3 control 20 = FB ControlWord B13 21 = FB ControlWord B13 21 = FB ControlWord B15 23 = PID1 in Sleep mode 24 = Reserved 25 = PID1 supervision limits 26 = PID2 supervision limits 27 = Motor 1 control 28 = Motor 2 control 30 = Motor 4 control 31 = Reserved (Always open) 32 = Reserved (Always open) 33 = Reserved (Always open) 34 = Maintenance alarm 35 = Maintenance fault
M3.5.3.2.2	Basic R01 ON delay	0.00	300.00	S	0.00	11002	ON delay for relay
M3.5.3.2.3	Basic R01 OFF delay	0.00	300.00	S	0.00	11003	OFF delay for relay
M3.5.3.2.4	Basic R02 function	0	35		28	11004	See M3.5.3.2.1
M3.5.3.2.5	Basic R02 ON delay	0.00	300.00	S	0.00	11005	See M3.5.3.2.2.
M3.5.3.2.6	Basic R02 OFF delav	0.00	300.00	S	0.00	11006	See M3.5.3.2.3.
M3.5.3.2.7	Basic R03 function	0	35		29	11007	See M3.5.3.2.1. Not visible if only 2 output relays are installed

<u>3.5.7.3</u> Digital outputs, slot B (Basic)

Table 28. Digital output settings on basic I/O board

<u>3.5.7.4</u>	Expander	slots D	and E	digital	<u>outputs</u>
	-			_	-

Code	Parameter	Min	Max	Unit	Default	ID	Description
	Application dynamic output list						Shows only parameters for existing outputs in slot D/E. Selections as in Basic R01 Not visible if no digital output exists in slot D/E.

Table 29. Slot D/E digital outputs

3.5.7.5	Analog	outputs,	Slot A	(Basic))
					-

Code	Parameter	Min	Max	Unit	Defaul t	ID	Description
M3.5.4.1.1	AO1 function	0	19		2	10050	0=TEST 0% (Not used) 1=TEST 100% 2=Output freq (0 -fmax) 3=Freq reference (0-fmax) 4=Motor speed (0 - Motor nominal speed) 5=Output current ($0-I_{nMotor}$) 6=Motor torque ($0-T_{nMotor}$) 7=Motor power ($0-P_{nMotor}$) 8=Motor voltage ($0-U_{nMotor}$) 9=DC link voltage ($0-1000V$) 10=PID1 output ($0-100\%$) 11=PID2 output ($0-100\%$) 12=ProcessDataIn1 13=ProcessDataIn2 14=ProcessDataIn3 15=ProcessDataIn4 16=ProcessDataIn5 17=ProcessDataIn6 18=ProcessDataIn7 19=ProcessDataIn8 NOTE: For ProcessDataIn, e.g. value 5000 = 50.00%
M3.5.4.1.2	AO1 filter time	0.00	300.00	S	1.00	10051	Filtering time of analog output signal. See M3.5.2.2 0 = No filtering
M3.5.4.1.3	AO1 minimum	0	1		0	10052	0 = 0 mA / 0V 1 = 4 mA / 2V Note the difference in analog output scaling in parameter M3.5.4.1.4.
M3.5.4.1.4	AO1 minimum scale	Varies	Varies	Varies	0.0	10053	Min scale in process unit (depends on selection of AO1 function)
M3.5.4.1.5	AO1 maximum scale	Varies	Varies	Varies	0.0	10054	Max scale in process unit (depends on selection of AO1 function)

Table 30. Basic I/O board analog output settings

<u>3.5.7.6</u> Expander slots D to E analog outputs

Code	Parameter	Min	Мах	Unit	Default	ID	Description
	Application dynamic output list						Shows only parameters for existing outputs in slot D/E. Selections as in Basic AO1 Not visible if no analog out- put exists in slot D/E.

Table 31. Slot D/E analog outputs

Π

3.5.8 Group 3.7: Prohibit Frequencies

In some systems it may be necessary to avoid certain frequencies due to mechanical resonance problems. By setting up prohibit frequencies it is possible to skip these ranges.

Code	Parameter	Min	Мах	Unit	Default	ID	Description
M3.7.1	Prohibit frequency range 1 low limit	-1,00	320,00	Hz	0,00	509	0 = Not used
M3.7.2	Prohibit frequency range 1 high limit	0,00	320,00	Hz	0,00	510	0 = Not used
M3.7.3	Prohibit frequency range 2 low limit	0,00	320,00	Hz	0,00	511	0 = Not used
M3.7.4	Prohibit frequency range 2 high limit	0,00	320,00	Hz	0,00	512	0 = Not used
M3.7.5	Prohibit frequency range 3 low limit	0,00	320,00	Hz	0,00	513	0 = Not used
M3.7.6	Prohibit frequency range 3 high limit	0,00	320,00	Hz	0,00	514	0 = Not used
M3.7.7	Ramp time factor	0,1	10,0	Times	1,0	518	Multiplier of the currently selected ramp time between prohibit frequency limits.

Table 32. Prohibit frequencies

3.5.9 Group 3.8: Limit supervisions

Choose here:

- 1. One or two (M3.8.1/M3.8.5) signal values for supervision.
- 2. Whether the low or high limits are supervised (M3.8.2/M3.8.6)
- 3. The actual limit values (M3.8.3/M3.8.7).
- 4. The hystereses for the set limit values (M3.8.4/M3.8.8).

Code	Parameter	Min	Max	Unit	Default	ID	Description
M3.8.1	Supervision #1 item selection	0	7		0	1431	0 = Output frequency 1 = Frequency reference 2 = Motor current 3 = Motor torque 4 = Motor power 5 = DC-link voltage 6 = Analog input 1 7 = Analog input 2
M3.8.2	Supervision #1 mode	0	2		0	1432	0 = Not used 1 = Low limit supervision (output active over limit) 2 = High limit supervision (output active under limit)
M3.8.3	Supervision #1 limit			Varies	25.00	1433	Supervision limit for selected item. Unit appears automatically.
M3.8.4	Supervision #1 limit hysteresis			Varies	5.00	1434	Supervision limit hysteresis for selected item. Unit appears automatically.
M3.8.5	Supervision #2 item selection	0	7		1	1435	See M3.8.1
M3.8.6	Supervision #2 mode	0	2		0	1436	See M3.8.2
M3.8.7	Supervision #2 limit			Varies	40.00	1437	See M3.8.3
M3.8.8	Supervision #2 limit hysteresis			Varies	5.00	1438	See M3.8.4

Table 33. Limits supervision settings

3.5.10 Group 3.9: Protections

	Code	Parameter	Min	Max	Unit	Default	ID	Description
	M3.9.1	Response to Analog input low fault	0	4		0	700	0=No action 1=Alarm 2=Alarm, set preset fault fre- quency 3=Fault (Stop according to stop mode) 4=Fault (Stop by coasting)
∎∰	M3.9.2	Response to external fault	0	3		2	701	0 = No action 1 = Alarm 2 = Fault (Stop according to stop mode) 3 = Fault (Stop by coasting)
	M3.9.3	Response to Input phase fault	0	3		3	730	See above
	M3.9.4	Undervoltage fault	0	1		0	727	0 = Fault stored in history 1 = Fault not stored in history
	M3.9.5	Response to output phase fault	0	3		2	702	See M3.9.2
	M3.9.6	Motor thermal protec- tion	0	3		2	704	See M3.9.2
	M3.9.7	Motor ambient temper- ature factor	-20.0	100.0	°C	40.0	705	Ambient temperature in °C
∎Æ	M3.9.8	Motor thermal zero speed cooling	5.0	150.0	%	Varies	706	Defines the cooling factor at zero speed in relation to the point where the motor is run- ning at nominal speed with- out external cooling.
∎Æ	M3.9.9	Motor thermal time constant	1	200	min	20	707	The time constant is the time within which the calculated thermal stage has reached 63% of its final value.
	M3.9.10	Motor thermal loadabil- ity factor	0	150	%	100	708	
	M3.9.11	Motor stall fault	0	3		0	709	See M3.9.2
	M3.9.12	Underload fault (bro- ken belt/dry pump)	0	3		0	713	See M3.9.2
	M3.9.13	Response to Fieldbus communication fault	0	4		3	733	See M3.9.1
	M3.9.14	Slot communication fault	0	3		2	734	See M3.9.2
	M3.9.15	Thermistor fault	0	3		0	732	See M3.9.2
	M3.9.16	Response to PID1 supervision fault	0	3		2	749	See M3.9.2
	M3.9.17	Response to PID2 supervision fault	0	3		2	757	See M3.9.2

Table 34. Protections settings

3

Code	Parameter	Min	Max	Unit	Default	ID	Description
M3.10.1	Automatic reset	0	1		0	731	0 = Disabled 1 = Enabled
M3.10.2	Restart function	0	1		1	719	The start mode for Automatic reset is selected with this parameter: 0 = Flying start (conditional) 1 = According to par. M3.2.3
M3.10.3	Wait time	0,10	10000,0	s	0,50	717	Wait time before the first reset is executed.
M3.10.4	Trial time	0,00	10000,0	s	60,00	718	When the trial time has elapsed, and the fault is still active, the drive will trip to fault.
M3.10.5	Number of trials	1	10		4	759	NOTE: Total number of trials (irrespective of fault type)
M3.10.6	Autoreset: Undervoltage	0	1		1	720	Autoreset permitted? 0 = No 1 = Yes
M3.10.7	Autoreset: Overvoltage	0	1		1	721	Autoreset permitted? 0 = No 1 = Yes
M3.10.8	Autoreset: Overcurrent	0	1		1	722	Autoreset permitted? 0 = No 1 = Yes
M3.10.9	Autoreset: AI low	0	1		1	723	Autoreset permitted? 0 = No 1 = Yes
M3.10.10	Autoreset: Unit over- temperature	0	1		1	724	Autoreset permitted? 0 = No 1 = Yes
M3.10.11	Autoreset: Motor over- temperature	0	1		1	725	Autoreset permitted? 0 = No 1 = Yes
M3.10.12	Autoreset: External fault	0	1		0	726	Autoreset permitted? 0 = No 1 = Yes
M3.10.13	Autoreset: Underload fault	0	1		0	738	Autoreset permitted? 0 = No 1 = Yes

Table 35. Autoreset settings

3.5.12 Group 3.11: Timer functions

The functions of this parameter group can be made the fullest advantage of if the Real Time Clock settings have been properly made during the Startup Wizard (see page 2 and page 3).

You can program the up to five incidents to take place between set points of time (*Intervals*) and additionally three timer-based functions to last for a set period of time.

Intervals and Timers are assigned to the three available Time Channels .

Example of programming: You want to apply *Preset frequency 1* (P3.3.12, set to use with parameter P3.5.1.18, *Preset frequency selection 0*) Mondays, from 08:00 until 16:00 hrs.

1. Set the parameters for *Interval 1* **(3.11.1):** P3.11.1.3: *From day*: **'1**' (=Monday) P3.11.1.1: *ON time*: **'0800**'

P3.11.1.2: *OFF time*: **'1600**' P3.11.1.4: *To day*: **'1**' (=Monday)

P3.11.1.5: Assign to channel: '1' (= Time Channel 1)

2. Then assign the selected Time channel to a digital input using the TTF method, (see chapter 3.5.2).

Go to menu *Parameters* (M3), further down to menu *I/O config* (M3.5) and *Digital inputs* (M3.5.1). Locate the parameter *Preset frequency selection 0* (M3.5.1.18). Change the value of this parameter to *TimeChannel.1*.

Now the function *Preset frequency selection 0* is activated at 08:00 on Monday and deactivated at 16:00 the same day.

The status of the Intervals and Time channels can be monitored in Menu M2.3.

Code	Parameter	Min	Мах	Unit	Default	ID	Description		
3.11.1 IN	TERVAL 1								
M3.11.1.1	ON time	00:00:00	23:59:59	hh:mm:ss	00:00:00	1464	ON time		
M3.11.1.2	OFF time	00:00:00	23:59:59	hh:mm:ss	00:00:00	1465	OFF time		
M3.11.1.3	From day	0	6		0	1466	ON day of week 0=Sunday 1=Monday 2=Tuesday 3=Wednesday 4=Thursday 5=Friday 6=Saturday		
M3.11.1.4	To day	0	6		0	1467	See above		
M3.11.1.5	Assign to channel	0	3		0	1468	Select affected time channel (1-3) 0=Not used 1=Time channel 1 2=Time channel 2 3=Time channel 3		
3.11.2 INTERVAL 2									
M3.11.2.1	ON time	00:00:00	23:59:59	hh:mm:ss	00:00:00	1469	See Interval 1		
M3.11.2.2	OFF time	00:00:00	23:59:59	hh:mm:ss	00:00:00	1470	See Interval 1		
M3.11.2.3	From day	0	6		0	1471	See Interval 1		

M3.11.2.4	To day	0	6		0	1472	See Interval 1
M3.11.2.5	Assign to channel	0	3		0	1473	See Interval 1
3.11.3 IN	TERVAL 3						
M3.11.3.1	ON time	00:00:00	23:59:59	hh:mm:ss	00:00:00	1474	See Interval 1
M3.11.3.2	OFF time	00:00:00	23:59:59	hh:mm:ss	00:00:00	1475	See Interval 1
M3.11.3.3	From day	0	6		0	1476	See Interval 1
M3.11.3.4	To day	0	6		0	1477	See Interval 1
M3.11.3.5	Assign to channel	0	3		0	1478	See Interval 1
3.11.4 IN	TERVAL 4						
M3.11.4.1	ON time	00:00:00	23:59:59	hh:mm:ss	00:00:00	1479	See Interval 1
M3.11.4.2	OFF time	00:00:00	23:59:59	hh:mm:ss	00:00:00	1480	See Interval 1
M3.11.4.3	From day	0	6		0	1481	See Interval 1
M3.11.4.4	To day	0	6		0	1482	See Interval 1
M3.11.4.5	Assign to channel	0	3		0	1483	See Interval 1
3.11.5 IN	TERVAL 5						
M3.11.5.1	ON time	00:00:00	23:59:59	hh:mm:ss	00:00:00	1484	See Interval 1
M3.11.5.2	OFF time	00:00:00	23:59:59	hh:mm:ss	00:00:00	1485	See Interval 1
M3.11.5.3	From day	0	6		0	1486	See Interval 1
M3.11.5.4	To day	0	6		0	1487	See Interval 1
M3.11.5.5	Assign to channel	0	3		0	1488	See Interval 1
3.11.6 TI	MER 1						
M3.11.6.1	Duration	0	72000	S	0	1489	The time the timer will run when activated. (Activated by DI)
M3.11.6.2	Assign to channel	0	3		0	1490	Select affected time channel (1-3) 0=Not used 1=Time channel 1 2=Time channel 2 3=Time channel 3
3.11.7 TI	MER 2						
M3.11.7.1	Duration	0	72000	S	0	1491	See Timer 1
M3.11.7.2	Assign to channel	0	3		0	1492	See Timer 1
3.11.8 TI	MER 3						
M3.11.8.1	Duration	0	72000	S	0	1493	See Timer 1
M3.11.8.2	Assign to channel	0	3		0	1494	See Timer 1

Table 36. Timer functions

3.5.13 Group 3.12: PID-controller 1

3.5.13.1 Basic settings

	Code	Parameter	Min	Max	Unit	Default	ID	Description
	M3.12.1.1	PID gain	0.00	1000.00	%	100.00	118	If the value of the parameter is set to 100% a change of 10% in the error value causes the controller output to change by 10%.
	M3.12.1.2	PID integration time	0.00	600.00	S	1.00	119	If this parameter is set to 1,00 second a change of 10% in the error value causes the controller output to change by 10.00%/s.
	M3.12.1.3	PID derivation time	0.00	100.00	S	0.00	132	If this parameter is set to 1,00 second a change of 10% in the error value during 1.00 s causes the controller output to change by 10.00%.
	M3.12.1.4	Process unit selection	1	40		1	1036	Select unit for actual value.
	M3.12.1.5	Process unit min	Varies	Varies	Varies	0	1033	
	M3.12.1.6	Process unit max	Varies	Varies	Varies	100	1034	
	M3.12.1.7	Process unit decimals	0	4		2	1035	Number of decimals for pro- cess unit value
	M3.12.1.8	Error inversion	0	1		0	340	0 = Normal (Feedback < Set- point -> Increase PID output) 1 = Inverted (Feedback < Setpoint -> Decrease PID out- put)
∎₽₽	M3.12.1.9	Dead band hysteresis	Varies	Varies	Varies	0	1056	Dead band area around the setpoint in process units. The PID output is locked if the feedback stays within the deadband area for a pre- defined time.
∎Æ	M3.12.1.10	Dead band delay	0.00	320.00	S	0.00	1057	If the feedback stays within the dead band area for a pre- defined time, the output is locked.

Table 37.

<u>3.5.13.2</u> Setpoints

	Code	Parameter	Min	Max	Unit	Default	ID	Description
	M3.12.2.1	Keypad setpoint 1	Varies	Varies	Varies	0	167	
	M3.12.2.2	Keypad setpoint 2	Varies	Varies	Varies	0	168	
	M3.12.2.3	Setpoint ramp time	0.00	300.0	S	0.00	1068	Defines the rising and falling ramp times for setpoint changes. (Time to change from minimum to maximum)
	M3.12.2.4	Setpoint source 1 selection	0	16		1	332	0 = Not used 1 = Keypad setpoint 1 2 = Keypad setpoint 2 3 = Al1 4 = Al2 5 = Al3 6 = Al4 7 = Al5 8 = Al6 9 = ProcessDataln1 10 = ProcessDataln2 11 = ProcessDataln3 12 = ProcessDataln4 13 = ProcessDataln6 15 = ProcessDataln7 16 = ProcessDataln8 Al's and ProcessDataln are handled as percent (0.00- 100.00%) and scaled accord- ing to Setpoint minimum and maximum. NOTE: ProcessDataln use two decimals.
	M3.12.2.5	Setpoint 1 minimum	-200.00	200.00	%	0.00	1069	Minimum value at analog sig- nal minimum.
	M3.12.2.6	Setpoint 1 maximum	-200.00	200.00	%	100.00	1070	Maximum value at analog signal maximum.
	M3.12.2.7	Sleep frequency limit 1	0.00	320.00	Hz	0.00	1016	Drive goes to sleep mode when the output frequency stays below this limit for a time greater than that defined by parameter <i>Sleep delay</i> .
∎₽	M3.12.2.8	Sleep delay 1	0	3000	S	0	1017	The minimum amount of time the frequency has to remain below the Sleep level before the drive is stopped.
∎Æ	M3.12.2.9	Wake-up level 1			Varies	0.0000	1018	Defines the level for the PID feedback value wake-up supervision. Uses selected process units.
	M3.12.2.10	Setpoint 1 boost			Varies	0.0000	1071	The setpoint can be boosted with a digital input.
	M3.12.2.11	Setpoint source 2 selection	0	16		2	431	See par. M3.12.2.4
	M3.12.2.12	Setpoint 2 minimum	-200.00	200.00	%	0.00	1073	Minimum value at analog sig- nal minimum.

Ĩ

M3.12.2.13	Setpoint 2 maximum	-200.00	200.00	%	100.00	1074	Maximum value at analog signal maximum.
M3.12.2.14	Sleep frequency limit 2	0.00	320.00	Hz	0.00	1075	See M3.12.2.7.
M3.12.2.15	Sleep delay 2	0	3000	S	0	1076	See M3.12.2.8.
M3.12.2.16	Wake-up level 2			Varies	0.0000	1077	See M3.12.2.9.
M3.12.2.17	Setpoint 2 boost			Varies	0.0000	1078	See M3.12.2.10.

Table 38.
<u>3.5.13.3</u> Feedbacks

Code	Parameter	Min	Max	Unit	Default	ID	Description
M3.12.3.1	Feedback function	1	9		1	333	1=Only Source1 in use 2=SQRT(Source1);(Flow=Co nstant x SQRT(Pressure)) 3=SQRT(Source1- Source 2) 4=SQRT(Source 1) + SQRT (Source 2) 5=Source 1 + Source 2 6=Source 1 - Source 2 7=MIN (Source 1, Source 2) 8=MAX (Source 1, Source 2) 9=MEAN (Source1, Source2)
M3.12.3.2	Feedback function gain	-1000.0	1000.0	%	100.0	1058	Used e.g. with selection 2 in <i>Feedback function</i>
M3.12.3.3	Feedback 1 source selection	0	14		2	334	0 = Not used 1 = Al1 2 = Al2 3 = Al3 4 = Al4 5 = Al5 6 = Al6 7 = ProcessDataln1 8 = ProcessDataln2 9 = ProcessDataln3 10 = ProcessDataln4 11 = ProcessDataln6 13 = ProcessDataln6 13 = ProcessDataln7 14 = ProcessDataln8 Al's and ProcessDataln are handled as % (0.00- 100.00%) and scaled accord- ing to Feedback min and max. NOTE: ProcessDataln use two decimals.
M3.12.3.4	Feedback 1 minimum	-200.00	200.00	%	0.00	336	Minimum value at analog sig- nal minimum.
M3.12.3.5	Feedback 1 maximum	-200.00	200.00	%	100.00	337	Maximum value at analog signal maximum.
M3.12.3.6	Feedback 2 source selection	0	14		0	335	See P3.12.3.3
M3.12.3.7	Feedback 2 minimum	-200.00	200.00	%	0.00	338	Minimum value at analog sig- nal minimum.
M3.12.3.8	Feedback 2 maximum	-200.00	200.00	%	100.00	339	Maximum value at analog signal maximum.

Table 39.

Ĩ

3.5.13.4 Feedforward

Feedforward usually needs accurate process models, but in some simple cases again + offset type of feedforward is enough. The feedforward part does not use any feedback measurements of the actual controlled process value (water level in the example on page 67). Feedforward control uses other measurements which are indirectly affecting the controlled process value.

Code	Parameter	Min	Max	Unit	Default	ID	Description
M3.12.4.1	Feedforward function	1	9		1	1059	See M3.12.3.1.
M3.12.4.2	Feedforward function gain	-1000	1000	%	100.0	1060	See M3.12.3.2
M3.12.4.3	Feedforward 1 source selection	0	14		0	1061	See M3.12.3.3
M3.12.4.4	Feedforward 1 mini- mum	-200.00	200.00	%	0.00	1062	See M3.12.3.4
M3.12.4.5	Feedforward 1 maxi- mum	-200.00	200.00	%	100.00	1063	See M3.12.3.5
M3.12.4.6	Feedforward 2 source selection	0	14		0	1064	See M3.12.3.6
M3.12.4.7	Feedforward 2 min	-200.00	200.00	%	0.00	1065	See M3.12.3.7
M3.12.4.8	Feedforward 2 max	-200.00	200.00	%	100.00	1066	See M3.12.3.8

Table 40.

<u>3.5.13.5</u> Process supervision

Process supervision is used to control that the actual value stays within predefined limits. With this function you can e.g. detect a major pipe burst and stop unnecessary flooding. See more on page 68.

Code	Parameter	Min	Мах	Unit	Default	ID	Description
M3.12.5.1	Enable process super- vision	0	1		0	735	0 = Disabled 1 = Enabled
M3.12.5.2	Upper limit	Varies	Varies	Varies	Varies	736	Upper actual/process value supervision
M3.12.5.3	Lower limit	Varies	Varies	Varies	Varies	758	Lower actual/process value supervision
M3.12.5.4	Delay	0	30000	S	0	737	If the desired value is not reached within this time a fault or alarm is created.

Table 41.

3.5.13.6 Pressure loss compensation

	Code	Parameter	Min	Max	Unit	Default	ID	Description
∎₽	M3.12.6.1	Enable setpoint 1	0	1		0	1189	Enables pressure loss com- pensation for setpoint 1. 0 = Disabled 1 = Enabled
∎₽	M3.12.6.2	Setpoint 1 max com- pensation	Varies	Varies	Varies	Varies	1190	Value added proportionally to the frequency. Setpoint compensation = Max compensation * (FreqOut-MinFreq)/(Max- Freq-MinFreq)
	M3.12.6.3	Enable setpoint 2	0	1		0	1191	See M3.12.6.1.
	M3.12.6.4	Setpoint 2 max com- pensation	Varies	Varies	Varies	Varies	1192	See M3.12.6.2.

Table 42.

3.5.14 Group 3.13: PID-controller 2

<u>3.5.14.1</u> Basic settings

For more detailed information, see chapter 3.5.13.

Code	Parameter	Min	Max	Unit	Default	ID	Description
M3.13.1.1	Enable PID	0	1		0	1630	0 = Disabled 1 = Enabled
M3.13.1.2	Output in Stop	0.0	100.0	%	0.0	1100	The output value of the PID controller in % of its maxi- mum output value while it is stopped from digital input
M3.13.1.3	PID gain	0.00	1000.00	%	100.00	1631	
M3.13.1.4	PID integration time	0.00	600.00	S	1.00	1632	
M3.13.1.5	PID derivation time	0.00	100.00	S	0.00	1633	
M3.13.1.6	Process unit selection	0	40		1	1635	
M3.13.1.7	Process unit min	Varies	Varies	Varies	0	1664	
M3.13.1.8	Process unit max	Varies	Varies	Varies	100	1665	
M3.13.1.9	Process unit decimals	0	4		2	1666	
M3.13.1.10	Error inversion	0	1		0	1636	
M3.13.1.11	Dead band hysteresis	Varies	Varies	Varies	0.0	1637	
M3.13.1.12	Dead band delay	0.00	320.00	S	0.00	1638	

Table 43.

<u>3.5.14.2</u> <u>Setpoints</u>

Code	Parameter	Min	Max	Unit	Default	ID	Description
M3.13.2.1	Keypad setpoint 1	0.00	100.00	Varies	0.00	1640	
M3.13.2.2	Keypad setpoint 2	0.00	100.00	Varies	0.00	1641	
M3.13.2.3	Setpoint ramp time	0.00	300.00	S	0.00	1642	
M3.13.2.4	Setpoint source 1 selection	0	16		1	1643	
M3.13.2.5	Setpoint 1 minimum	-200.00	200.00	%	0.00	1644	Minimum value at analog signal minimum.
M3.13.2.6	Setpoint 1 maximum	-200.00	200.00	%	100.00	1645	Maximum value at analog signal maximum.
M3.13.2.7	Setpoint source 2 selection	0	16		0	1646	See M3.13.2.4.
M3.13.2.8	Setpoint 2 minimum	-200.00	200.00	%	0.00	1647	Minimum value at analog signal minimum.
M3.13.2.9	Setpoint 2 maximum	-200.00	200.00	%	100.00	1648	Maximum value at analog signal maximum.

<u>3.5.14.3</u> Feedback

For more detailed information, see chapter 3.5.13.

Code	Parameter	Min	Мах	Unit	Default	ID	Description
M3.13.3.1	Feedback function	1	9		1	1650	
M3.13.3.2	Feedback function gain	-1000.0	1000.0	%	100.0	1651	
M3.13.3.3	Feedback 1 source selection	0	14		1	1652	
M3.13.3.4	Feedback 1 minimum	-200.00	200.00	%	0.00	1653	Minimum value at analog signal minimum.
M3.13.3.5	Feedback 1 maximum	-200.00	200.00	%	100.00	1654	Maximum value at analog signal maximum.
M3.13.3.6	Feedback 2 source selection	0	14		2	1655	
M3.13.3.7	Feedback 2 minimum	-200.00	200.00	%	0.00	1656	Minimum value at analog signal minimum.
M3.13.3.8	Feedback 2 maximum	-200.00	200.00	%	100.00	1657	Maximum value at analog signal maximum.

Table 45.

<u>3.5.14.4</u> Process supervision

For more detailed information, see chapter 3.5.13.

Code	Parameter	Min	Max	Unit	Default	ID	Description
M3.13.4.1	Enable supervision	0	1		0	1659	0 = Disabled 1 = Enabled
M3.13.4.2	Upper limit	Varies	Varies	Varies	Varies	1660	
M3.13.4.3	Lower limit	Varies	Varies	Varies	Varies	1661	
M3.13.4.4	Delay	0	30000	S	0	1662	If the desired value is not reached within this time a fault or alarm is activated.

Table 46.

3.5.15 Group 3.14: Multi-pump

The *Multi-pump* functionality allows you to contrd **up to 4 motors** (pumps, fans) with PID controller 1. The drive is connected to one motor which is the "regulating" motor connecting and disconnecting the other motors to/from the mains, by means of contactors controlled with relays when needed in order to maintain the right setpoint. The *Autochange* function controls the order/priority in which the motors are started in order to guarantee their equal wear. The controlling motor **can be included** in the autochange and interlocks logic, or, it may be selected to always functions as Motor 1. Motors can be taken out of use momentarily, e.g. for service, using the motor *Interlock function*. See page 71.

Code	Parameter	Min	Max	Unit	Default	ID	Description
M3.14.1	Number of motors	1	4		1	1001	Total number of motors (pumps/fans) used in multi- pump system
M3.14.2	Interlock function	0	1		1	1032	Enable/Disable use of inter- locks. Interlocks are used to tell the system if a motor is connected or not. 0 = Disabled 1 = Enabled
M3.14.3	Include FC	0	1		1	1028	Include the drive in the autochange and interlocking system. 0 = Disabled 1 = Enabled
M3.14.4	Autochange	0	1		0	1027	Disable/enable rotation of starting order and priority of motors. 0 = Disabled 1 = Enabled
M3.14.5	Autochange interval	0.0	3000.0	h	48.0	1029	After the expiry of the time defined with this parameter, the autochange function takes place if the capacity used lies below the level defined with parameters P3.14.6 and P3.14.7.
M3.14.6	Autochange: Fre- quency limit	0.00	50.00	Hz	25.00	1031	These parameters define the level below which the capac-
M3.14.7	Autochange: Motor limit	0	4		1	1030	the autochange can take place.
M3.14.8	Bandwidth	0	100	%	10	1097	Percentage of the setpoint. E.g.: Setpoint = 5 bar, Band- width = 10%: As long as the feedback value stays within 4.55.5 bar motor discon- nection or removal will not take place.
M3.14.9	Bandwidth delay	0	3600	S	10	1098	With feedback outside the bandwidth, this time must pass before pumps are added or removed.

3.6 HVAC Application - Additional parameter information

Due to its user-friendliness and simplicity of use, the most parameters of the HVAC Application only require a basic description which is given in the parameter tables in chapter 3.5.

In this chapter, you will find additional information on certain most advanced parameters of the HVAC Application. Should you not find the information you need contact your distributor.

3.1.1.7 MOTOR CURRENT LIMIT

This parameter determines the maximum motor current from the drive. The parameter value range differs from size to size.

When the current limit is active the drive output frequency is decreased.

NOTE: This is not an overcurrent trip limit.

3.2.4 STOP FUNCTION

Selection number	Selection name	Description
0	Coasting	The motor is allowed to stop on its own inertia. The control by the drive is discontinued and the drive current drops to zero as soon as the stop command is given.
1	Ramp	After the Stop command, the speed of the motor is decelerated according to the set deceleration parameters to zero speed.

3.2.5 START/STOP LOGIC

Values 0...2 offer possibilities to control the starting and stopping of the drive with digital signal connected to digital inputs. CS = Control signal.

Selection number	Selection name	Note
0	Start forward	The functions take place when the contacts are closed.
1	CS1: Start fwd pulse CS2: Stop pulse	For 3-wire control (pulse control) See Figure 8.
2	Start fwd pulse	Required to start.

Figure 8. Start pulse/ Stop pulse

M3.3.9 PRESET FREQUENCY MODE

You can use the preset frequency parameters to define certain frequency references in a d-vance. These references are then applied by activating/inactivating digital inputs connected to parameters M3.5.1.18, M3.5.1.19 and M3.5.1.20 ((*Preset frequency selection B0, Preset frequency selection B1* and *Preset frequency selection B2*). Two different logics can be selected:

Selection number	Selection name	Note
0	Binary coded	Combine activated inputs according to Table 48 to choose the Preset frequency needed.
1	Number (of inputs used)	According to how many of the inputs assigned for <i>Preset fre-</i> <i>quency selections</i> are active you can apply the <i>Preset fre-</i> <i>quencies</i> 1 to 3.

МЗ.З.10 то

M3.3.17 PRESET FREQUENCIES 1 TO 7

The values of the preset frequencies are automatically limited between the minimum and maximum frequencies (M3.3.1 and M3.3.2). See table below.

Required action			Activated frequency
Choose value 1 for parame- ter M3.3.3		Preset frequency 0	
B2	B1	B0	Preset frequency 1
B2	B1	B0	Preset frequency 2
B2	B1	B0	Preset frequency 3
B2	B1	B0	Preset frequency 4
B2	B1	B0	Preset frequency 5
B2	B1	B0	Preset frequency 6
B2	B1	B0	Preset frequency 7

Table 48. Selection of preset frequencies; = input activated

M3.4.1 RAMP 1 SHAPE

The start and end of acceleration and deceleration ramps can be smoothed with this parameter. Setting value 0 gives a linear ramp shape which causes acceleration and deceleration to act immediately to the changes in the reference signal.

Setting value 0.1...10 seconds for this parameter produces an S-shaped acceleration/deceleration. The acceleration time is determined with parameters M3.4.2 and M3.4.3. See Figure 9.

These parameters are used to reduce mechanical erosion and current spikes when the reference is changed.

Figure 9. Acceleration/Deceleration (S-shaped)

M3.4.9 FLUX BRAKING

Instead of DC braking, flux braking is a useful way to raise the braking capacity in cases where additional brake resistors are not needed.

When braking is needed, the frequency is reduced and the flux in the motor is increased, which in turn increases the motor's capability to brake. Unlike DC braking, the motor speed remains controlled during braking.

The flux braking can be set ON or OFF.

NOTE: Flux braking converts the energy into heat at the motor, and should be used intermittently to avoid motor damage.

M3.5.1.10 RUN ENABLE

Contact open: Start of motor **disabled** Contact closed: Start of motor **enabled**

The drive is stopped according to the selected function at M3.2.4. The follower drive willalways coast to stop.

M3.5.1.11 RUN INTERLOCK 1

M3.5.1.12 RUN INTERLOCK 2

The drive cannot be started if any of the interlocks are open.

The function could be used for a damper inte rlock, preventing the drive to start with damper closed.

M3.5.1.15 PRESET FREQUENCY SELECTION B0

M3.5.1.16 PRESET FREQUENCY SELECTION B1

M3.5.1.17 PRESET FREQUENCY SELECTION B2

Connect a digital input to these functions with the TTF programming method (see chapt er 3.5.2) to be able to apply Preset frequencies 1 to 7 (see Table 48 and pages 33, 35 and 59).

3.5.2.2 All SIGNAL FILTER TIME

When this parameter is given a value greater than 0 the function that filters out disturbances from the incoming analog signal is activated.

NOTE: Long filtering time makes the regulation response slower!

Figure 10. AI1 signal filtering

3.5.3.2.1 BASIC RO1 FUNCTION

Selection	Selection name	Description
0	Not used	
1	Ready	The drive is ready to operate
2	Run	The drive operates (motor is running)
3	General fault	A fault trip has occurred
4	General fault inverted	A fault trip has not occurred
5	General alarm	
6	Reversed	The reverse command has been selected
7	At speed	The output frequency has reached the set reference
8	Motor regulator activated	One of the limit regulators (e.g. current limit, torque limit) is activated
9	Preset frequency active	The preset frequency has been selected with digital input
10	Keypad control active	Keypad control mode selected
11	I/O control B active	I/O control place B selected
12	Limit supervision 1	Activates if the signal value falls below or exceeds the set
13	Limit supervision 2	supervision limit (M3.8.3 or M3.8.7) depending on the selected function.
14	Start command active	Start command is active.
15	Reserved	
16	Fire mode ON	
17	RTC timer 1 control	Time channel 1 is used.

Selection	Selection name	Description
18	RTC timer 2 control	Time channel 2 is used.
19	RTC timer 3 control	Time channel 3 is used.
20	FB Control WordB.13	
21	FB Control WordB.14	
22	FB Control WordB.15	
23	PID1 in Sleep mode	
24	Reserved	
25	PID1 supervision limits	PID1 feedback value is beyond supervision limits.
26	PID2 supervision limits	PID2 feedback value is beyond supervision limits.
27	Motor 1 control	Contactor control for Multi-pump function
28	Motor 2 control	Contactor control for Multi-pump function
29	Motor 3 control	Contactor control for Multi-pump function
30	Motor 4 control	Contactor control for Multi-pump function
31	Reserved	(Always open)
32	Reserved	(Always open)
33	Reserved	(Always open)
34	Maintenance warning	
35	Maintenance fault	

Table 49. Output signals via RO1

3.9.2 RESPONSE TO EXTERNAL FAULT

An alarm message or a fault action and message is generated by an external fault external fault signal in one of the programmable digital inputs (DI3 by default) using parameters M35.1.8 and M3.5.1.9. The information can also be programmed into any of the relay outputs.

M3.9.8 MOTOR THERMAL ZERO SPEED COOLING

Defines the cooling factor at zero speed in relation to the point where the motor is running at nominal speed without external cooling. See .

The default value is set assuming that there is no external fan cooling the motor. If an external fan is used this parameter can be set to 90% (or even higher).

If you change the parameter M3.1.1.4 (*Nominal current of motor*), this parameter is automatically restored to the default value.

Setting this parameter does not affect the maximum output current of the drive which is determined by parameter M3.1.1.7 alone.

The corn er freq uency for the thermal protection is 7 0% of the motor nominal frequency (M3.1.1.2).

Figure 11. Motor thermal current I_T curve

M3.9.9 MOTOR THERMAL TIME CONSTANT

This is the thermal time constant of the motor. The bigger the motor, the bigger the time constant. The time constant is the time within which the calculated thermal stage has reached 63% of its final value.

The motor thermal time is specific to the motor design and it varies between different motor manufacturers. The default value of the parameter varies from size to size.

If the motor's t6-time (t6 is the time in seconds the motor can safely operate at six times the rated current) is known (given by the motor manufacturer) the time constant parameter can be set basing on it. As a rule of thumb, the motor thermal time constant in minutes equals to 2*t6. If the drive is in stop stage the time constant is internally increased to three times the set parameter value. The cooling in stop stage is based on convection and the time constant is increased.

See Figure 12.

M3.9.10 MOTOR THERMAL LOADABILITY FACTOR

Setting value to 130% means that the nominal temperature will be reached with 130% of motor nominal current.

Figure 12. Motor temperature calculation

3.10.1 AUTOMATIC RESET

Activate the Automatic reset after fault with this parameter.

NOTE: Automatic reset is allowed for certain faults only. By giving the parameters M3.10.6 to M3.10.13 the value **0** or **1** you can either allow or deny the automatic reset after the respective faults.

3.10.4 AUTOMATIC RESET: TRIAL TIME

The Automatic reset function keeps resetting the faults appearing during the time set with this parameter. If the number of faults during the trial time exceed the value of parameter M3.10.5 a permanent fault is generated. Otherwise the fault is cleared after the trial time has elapsed and the next fault start the trial time count again.

Parameter M3.10.5 determines the maximum number of automatic fault reset attempts during the trial time set by this parameter. The time count starts from the first autoreset.

Figure 13. Automatic reset function

M3.12.1.9DEAD BAND HYSTERESISM3.12.1.10DEAD BAND DELAY

The PID controller output is locked if the actual value stays within the deadband area around the reference for apredefined time. This function will prevent unnecessary movement and wear on actuators, e.g. valves.

Figure 14. Dead band

M3.12.2.7 SLEEP FREQUENCY LIMIT 1 M3.12.2.8 SLEEP DELAY 1

M3.12.2.9 WAKE-UP LEVEL 1

This function will put the drive into sleep mode if the frequency stays below the sleep limit for a longer time than that set with the Sleep Delay (M3.12.2.8). This means that the start command remains on, but the run reque st is turn ed off. When the actual value goes below, or above, the wake-up level depending on the set acting mode the drive will activate the run request again if the start command is still on.

Figure 15. Sleep limit, Sleep delay, Wake-up level

M3.12.4.1 FEEDFORWARD FUNCTION

Feedforward usually needs accurate process models, but in some simple cases a gain + offset type of feedforward is enough. The feedforward part does not use any feedback measurements of the actual controlled process value (water level in the example on page 68). The feedforward control uses other measurements which are indirectly affecting the controlled process value.

Example 1:

Controlling the water level of a tank by means of flow control. The desired water level has been defined as a setpoint and the actual level as feedback. The control signal acts on the incoming flow.

The outflow could be thought of as a disturbance that can be measured. Based on the measurements of the disturbance, we can try to compensate for this disturbance by simple feedforward control (gain and offset) which is added to the PID output.

This way the controller would react much faster to changes in the outflow than if you just had measured the level.

Figure 16. Feedforward control

M3.12.5.1 ENABLE PROCESS SUPERVISION

Figure 17. Process supervision

Upper and lower limits around the reference are set. When the actual value goes above or below these a counter starts counting up towards the Delay (M3.12.5.4). When the actual value is within the allowed area the same counter counts down instead. Whe never the counter is higher than the Delay an alarm or fault (depending on the selected response) is generated.

PRESSURE LOSS COMPENSATION

Figure 18. Position of pressure sensor

If pressurizing a long pipe with many outlets, the best place for the sensor would probably be halfway down the pipe (Position 2). However, sensors might, for example, be placed directly after the pump. This will give the right pressure directly after the pump, but farther down in the pipe the pressure will drop depending on the flow.

M3.12.6.1ENABLE SETPOINT 1M3.12.6.2SETPOINT 1 MAX COMPENSATION

The sensor is placed in Position 1. The pressure in the pipe will remain constant when we have no flow. However, with flow, the pressure will drop farther down in the pipe. This can be compensated by raising the setpoint as the flow increases. In this case, the flow is estimated by the output frequency and the setpoint is linearly increased with the flow as in the figure below.

Figure 19. Enable setpoint 1 for pressure loss compensation

MULTI-PUMP USE

A motor/motors are connected/disconnected if the PID controller is not able to keep the process value or feedback within the defined bandwith around the setpoint.

Criteria for connecting/adding motors (also see Figure 20):

- Feedback value outside the bandwidth area.
- Regulating motor running at a "close-to-max" frequency (-2Hz)
- Conditions above are fulfilled for a time longer than the bandwidth delay
- There are more motors available

Figure 20.

Criteria for disconnecting/removing motors:

- Feedback value outside bandwidth area.
- Regulating motor running at a "close-to-min" frequency (+2 Hz)
- Conditions above are fulfilled for a time longer than the bandwidth delay
- There are more motors running than the regulating one.

P3.14.2 INTERLOCK FUNCTION

Interlocks can be used to tell the Multi Pump system that a motor is not available e.g. because of the motor is removed from the system for maintenance or bypassed for manual control.

Enable this function to use the interlocks. Choose the needed status for each motor by digital inputs (parameters M3.5.1.24 to M3.5.1.28). If the input is closed (TRUE) the motor isavailable for the Multi Pump system, otherwise it will not be connected by the Multi Pump logic.

EXAMPLE OF THE INTERLOCK LOGIC:

If the motor starting order is

1->2->3->4->5

Now, the interlock of motor **3** is removed, i.e. the value of parameter M3.51.26 is set to FALSE, the order changes to:

1->2->4->5.

If motor **3** is taken into use ag ain (changing the value of parameter M3.5.1.26 to TRUE) the system runs on without stopping and motor **3** is placed last in the sequence:

1->2->4->5->3

As soon as the system is stopped or goes to sleep mode for the next time, the sequence is updated to its original order.

1->2->3->4->5

M3.14.3 INCLUDE FC

Selection	Selection name	Description
0	Disabled	Motor 1 (motor connected to drive) is always frequency controlled and not affected by interlocks.
1	Enabled	All motors can be controlled and are affected by inter- locks.

WIRING

There are two different ways to make the connections depending on whether selection **0** or **1** is set as parameter value.

Selection 0, Disabled:

The drive or the regulating motor is not included in the autochange or interlocks logic. The drive is directly connected to motor 1 as in Figure 21 below. The other motors are auxiliary ones connected to the mains by contactors and controlled by relays in the drive.

Figure 21.

Selection 1, Enabled:

If the regulating motor needs to be included in the autochange or interlock logic make the connection according to Figure 22 below.

Every motor is controlled with one relay but the contactor logic takes care that the first connected motor is always connected to the drive and next to the mains.

Figure 22.

M3.14.4 AUTOCHANGE

Selection	Selection name	Description
0	Disabled	The priority/starting order of the motors is always 1-2-3-4- 5 in normal operation. It might have changed during run if interlocks have been removed and added again, but the priority/order is always restored after a stop.
1	Enabled	The priority is changed at certain intervals to get an equal wear on all motors. The intervals of the auto-change can be changed (M3.14.5). You can also set a limit of how many motors are allowed to run (M3.14.7) as well as for the maximum frequency of the regulating drive when the autochange is done (M3.14.6). If the autochange interval M3.14.5) has expired, but the frequency and motor limits are not fulfilled, the autochange will be postponed until all conditions are met (this is to avoid e.g. sudden pressure drops because of the system performing an autochange when there is a high capacity demand at a pump station.

EXAMPLE:

In the autochange sequence after the autochange has taken place, the motor with the highest priority is placed last and the others are moved up by one place:

Starting order/priority of motors: 1->2->3->4->5

--> Autochange -->

Starting order/priority of motors: 2->3->4->5->1

--> Autochange -->

Starting order/priority of motors: 3->4->5->1->2

3.7 HVAC Application - Fault tracing

When an unusual operating condition is detected by the drive control diagnostics, the drive initiates a notification visible, for example, on the keypad. The keypad will show the code, the name and a short description of the fault or alarm.

The notifications vary in consequence and required action. *Faults* make the drive stop and require reset of the drive. *Alarms* inform of unusual operating conditions but the drive will continue running. *Infos* may require resetting but do not affect the functioning of the drive.

For some faults you can program different responses in the application. See parameter group Protections.

The fault can be reset with the *Reset button* on the control keypad or via the I/O terminal. The faults are stored in the Fault history menu which can be browsed. The different fault codes you will find in the table below.

NOTE: When contacting distributor or factory because of a fault condition, always write down all texts and codes on the keypad display.

3.7.1 Fault appears

When a fault appears and the drive stops examine the cause of fault, perform the actions advised here and reset the fault either

- 1. with a long (1 s) press on the Reset button on the keypad or
- 2. by entering the *Diagnostics* Menu (M4), entering *Reset faults* (M4.2) and selecting *Reset faults* parameter.

3.7.2 Fault codes

Fault code	Fault name	Possible cause	Remedy
1	Overcurrent	Drive has detected too high a current (>4*I _H) in the motor cable: • sudden heavy load increase • short circuit in motor cables • unsuitable motor Fault ID: 1 = Hardware fault 2 = Software fault	Check loading. Check motor. Check cables. Make identification run.
2	Overvoltage	 The DC-link voltage has exceeded the limits defined. too short a deceleration time high overvoltage spikes in supply Fault ID: 10 = Hardware fault 11 = Software fault 	Make deceleration time longer. Use brake chopper or brake resistor (available as options) Activate overvoltage controller. Check input voltage.
3	Earth fault	Current measurement has detected that the sum of motor phase current is not zero. • insulation failure in cables or motor Fault ID: 20 = Hardware fault 21 = Software fault	Check motor cables and motor.
5	Charging switch	 The charging switch is open, when the START command has been given. faulty operation component failure Fault ID: 40 = Hardware fault 	Reset the fault and restart. Should the fault re-occur, con- tact the distributor near to you.
7	Saturation	 Various causes: defective component brake resistor short-circuit or overload Fault ID: 60 = Hardware fault 	Cannot be reset from keypad. Switch off power. DO NOT RE-CONNECT POWER! Contact factory. If this fault appears simulta- neously with Fault 1, check motor cables and motor
8	System fault	 Component failure Faulty operation Fault ID: 600 = Communication between control board and power unit has failed 601 = Communication between control board and power unit has interfer- ence but is still working (ALARM) 602 = Watchdog has reset the CPU 603 = Voltage of auxiliary power in power unit is too low 604 = Phase fault: Voltage of an output phase does not follow the reference 	Reset the fault and restart. Should the fault re-occur, con- tact the distributor near to you.

Fault code	Fault name	Possible cause	Remedy
9	Undervoltage	 DC-link voltage is under the voltage limits defined. most probable cause: too low a supply voltage AC drive internal fault defect input fuse external charge switch not closed Fault ID: 80 = Fault 81 = Alarm 	In case of temporary supply voltage break reset the fault and restart the drive. Check the supply voltage. If it is adequate, an internal failure has occurred. Contact the distributor near to you.
12	Brake chopper supervision	 no brake resistor installed brake resistor is broken brake chopper failure Fault ID: 110 = Hardware fault 111 = Brake chopper saturation alarm 	Check brake resistor and cabling. If the these are ok, the chopper is faulty. Contact the distributor near to you.
13	Drive undertem- perature	Too low temperature measured in power unit's heatsink or board. Heatsink temper- ature is under -10°C. Fault ID: 120 = Fault 121 = Alarm	
14	Drive overtem- perature	Too low temperature measured in power unit's heatsink or board. Heatsink temper- ature is over 100°C. Fault ID: 120 = Fault 121 = Alarm	Check the correct amount and flow of cooling air. Check the heatsink for dust. Check the ambient tempera- ture. Make sure that the switching frequency is not too high in relation to ambient tempera- ture and motor load.
15	Motor stalled	Motor stall protection has tripped. Fault ID: 140 = Fault	Check motor and load.
16	Motor overtem- perature	Motor overheating has been detected by drive motor temperature model. Motor is overloaded. Fault ID: 150 = Fault	Decrease motor load. If no motor overload exists, check the temperature model parameters.
17	Motor underload	Motor underload protection has tripped. Fault ID: 160 = Fault	Check load.
41	IGBT tempera- ture	IGBT temperature (unit temperature + I ₂ T) is too high. Fault ID: 400 = Fault	Check loading. Check motor size. Make identification run.
51	External fault	Digital input	
52	Keypad commu- nication fault	The connection between the control key- pad and drive is broken	Check keypad connection and possible keypad cable
53	Fieldbus commu- nication fault	The data connection between the fieldbus master and fieldbus board is broken	Check installation and fieldbus master.

Fault code	Fault name	Possible cause	Remedy
54	Slot fault	Defective option board or slot	Check board and slot
65	PC communica- tion fault	The data connection between the PC and drive is broken	
66	Thermistor fault	The thermistor input has detected an increase of motor temperature	Check motor cooling and load. Check thermistor connection (If thermistor input is not in use it has to be short circuited)
101	Process supervi- sion fault (PID1)	PID controller: Feedback value outside of supervision limits (and the delay if set).	
105	Process supervi- sion fault (PID2)	PID controller: Feedback value outside of supervision limits (and the delay if set).	

Table 50. Fault codes and descriptions

3.8 Fieldbus process data out

Values to monitor through fieldbus are:

Data	Value	Scale
Process Data Out 1	Output frequency	0.01 Hz
Process Data Out 2	Motor speed	1 rpm
Process Data Out 3	Motor current	0.1 A
Process Data Out 4	Motor torque	0.1 %
Process Data Out 5	Motor power	0.1 %
Process Data Out 6	Motor voltage	0.1 V
Process Data Out 7	DC-link voltage	1 V
Process Data Out 8	Last active fault code	

Table 51. Fieldbus Process Data Out

COMPACT VARIABLE FREQUENCY DRIVE

Automation and Control Solutions

Honeywell International Inc. 1985 Douglas Drive North Golden Valley, MN 55422 customer.honeywell.com Honeywell Limited-Honeywell Limitée 35 Dynamic Drive Toronto, Ontario M1V 4Z9

® U.S. Registered Trademark
© 2009 Honeywell International Inc.
63-2692-01 M.S. 07-09

Printed in U.S.A. on recycled paper containing at least 10% post-consumer paper fibers.

