V146 Series

High Water Pressure Two-Way Pressure-Actuated Water-Regulating Valves

V146 Series Valve

Description

The V146 Series 2-Way Pressure-Actuated Water-Regulating Valves are designed to regulate water flow and control refrigerant head pressure in systems with water-cooled condensers. The V146 valves are ideal for applications with system water pressures of
up to 350 psi (2413 kPa), such as high-rise buildings.
V146 valves may be used with standard noncorrosive refrigerants. V146 valves have a monel (nickel-copper alloy) seat and disc holder.

Features

- no close-fitting or sliding parts in water passages provides control in less-thanideal water conditions
- high-pressure design allows use in systems with up to $350 \mathrm{psi}(2413 \mathrm{kPa})$ water pressure
- pressure-balanced design resists changes to setpoint caused by gradual or sudden water pressure changes
- corrosion-resistant material for internal parts promotes long valve life
- accessible range spring allows easy manual flushing
- take-apart construction allows access to valve interior without removing valve from refrigeration system or pumping down

Applications

V146 valves are designed to regulate flow in systems with water pressures up to 350 psi (2413 kPa). The valves have an adjustable opening point in a refrigerant pressure in a range of 70-260 psi (483-1793 kPa). V146 valves may be used with standard noncorrosive refrigerants. Internal valve parts that come into contact with water are constructed of monel (nickel-copper alloy) and brass to resist corrosion.

To Order

Specify the code number from the following selection chart. Also refer to Finding the Valve Size Required and Valve Sizing Example on the following page.

Selection Chart

Code Number	Nominal Valve Size	Inlet and Outlet Ports	Pressure Connec- tion Style
V146AL-1C	1 in.	Union (Sweat)	46

Pressure connection and capillary as specified.

Specifications

V146 Valve Dimensions, inches
(millimeters) and Shipping Weight, pounds (kilograms)

Valve Code	Nominal	Callout					Shipping Number
	Valve Size	A	B	C	D	E	
V146AL-1C	1 in.	$4-3 / 4(121)$	$2-3 / 4(71)$	$10(254)$	$5-5 / 16(151)$	$4-1 / 16(103)$	$9.3(4.0)$

[^0]
V146 Series High Water Pressure Two-Way Pressure-Actuated Water-Regulating Valves (Continued)

Finding the Valve Size Required

Each application is unique and will require specific engineering data to properly size and design a system to fulfill the appropriate requirements. Typically, a valve will be replaced with another valve of the same size in a properly-sized and engineered system. Contact Johnson Controls/Penn Refrigeration Application Engineering at (800) 275-5676 to obtain specific engineering data. To make a rough field estimate of the size of valve for an application, find the valve size by locating a point on a flow chart (see Flow Chart, 1 in. V146 Valve diagram) that satisfies these requirements:

Maximum Water Flow

Maximum water flow (Flow) required by the condenser should be taken from information provided by the manufacturer. If the manufacturer's information is unavailable, maximum water flow in gallons per minute (gpm) can be roughly approximated with the following information:

- System Capacity (Tons of Refrigeration)
- Outlet Water Temperature (Temp. Outlet)
- Inlet Water Temperature (Temp. Inlet) If the outlet temperature is unknown, assume it to be $10^{\circ} \mathrm{F}\left(5.5^{\circ} \mathrm{C}\right)$ above the inlet temperature.

Refrigerant Head Pressure Rise

Refrigerant Head Pressure Rise Above Valve
Opening Point ($\mathbf{P}_{\mathbf{H}}$) can be roughly approximated with the following information:

- Refrigerant Condensing Pressure ($\mathrm{P}_{\mathrm{COND}}$) is the manufacturer's recommended condensing pressure.
- Valve Closing Pressure (P_{vc}) is equal to the refrigerant pressure at the highest ambient temperature the refrigeration equipment will be subjected to in the Off cycle. Use a PressureTemperature Chart to find this pressure.

Maximum Available Water Pressure Drop

The maximum available water pressure drop through the valve is the water pressure actually available to force water through the valve.

- Minimum Inlet Pressure is the water pressure from city water mains, pumps or other sources.
- Pressure Drop Through Condenser is the difference in water pressure between the condenser inlet and the condenser outlet. Obtain this information from the condenser manufacturer.
- Pressure Drop Through All Associated Piping is an estimated or calculated value.

Maximum Available Water Pressure Drop

Equations

$$
\begin{aligned}
& \text { Maximum Water Flow Flow }=\frac{\text { Tons of Refrigeration } \times 30}{\left(\text { Temp. }_{\text {outete }}-\text { Temp. }_{\text {mpete }}\right)} \\
& \text { Refrigerant Head Pressure Rise } P_{H}=P_{\text {COND }}-\left(P_{\mathrm{vc}}+7 \text { psi }\right) \\
& \text { Maximum Available Water Pressure Drop } P_{\text {Avall }}=P_{\text {IN }}-\Delta P_{\text {COND }}-P_{\text {Loss }}
\end{aligned}
$$

Metric conversions
Use these equations to convert between U.S. and S.I. units
$1 \mathrm{dm}^{3} / \mathrm{s}=3.6 \mathrm{~m}^{3} / \mathrm{h}=15.8$ U.S. gal. $/ \mathrm{min} .=13.2$ U.K. gal. $/ \mathrm{min}$.
$1 \mathrm{bar}=100 \mathrm{kPa}=0.1 \mathrm{MPa} \approx 1.02 \mathrm{kp} / \mathrm{cm}^{2}=1.02 \mathrm{~atm} \mathrm{at} \approx 14.5 \mathrm{psi}$

Valve Sizing Example

Maximum Water Flow

- According to the manufacturer's information, the maximum required water flow for the system is 35 GPM.
Maximum water flow is 35 GPM.

Refrigerant Head Pressure Rise

- The system uses refrigerant R-22.
- Maximum ambient temperature during the Off cycle is estimated at $95^{\circ} \mathrm{F}$, which gives a refrigerant pressure of 180 psi. $\left(\mathbf{P}_{\mathrm{vc}}=180\right)$
- The manufacturer's recommended condensing temperature is $110^{\circ} \mathrm{F}$, so the Condensing Pressure is 226 psi. $\left(\mathrm{P}_{\text {COND }}=226\right)$
- $\mathrm{P}_{\mathrm{H}}=\mathrm{P}_{\mathrm{COND}}-\left(\mathrm{P}_{\mathrm{Vc}}+7 \mathrm{psi}\right)=$ $226-(180+7)=39 \mathrm{psi}$
Refrigerant Head Pressure Rise is 39 psi.

Note: The maximum differential water pressure across a valve is $60 \mathrm{psi}(414 \mathrm{kPa})$

[^0]: The performance specifications are nominal and conform to acceptable industry standards. For applications at conditions beyond these specifications, consult the local Johnson Controls office. Johnson Controls, Inc. shall not be liable for damages resulting from misapplication or misuse of its products.
 © 10/02 Johnson Controls, Inc

